
Evaluation of a novel DSO-based Indoor
Ceiling-Vision Odometry System

Abdelhak Bougouffa1 , Emmanuel Seignez2, Samir Bouaziz3, and Florian Gardes4

Abstract—Indoor localization for mobile industrial robots is
a crucial step toward an autonomous system. A mobile robot
needs a reliable and robust localization system to achieve its
task autonomously. A reasonable estimate of the robot’s state
can be achieved through Visual Odometry (VO); however, with
dynamic objects in the scene, classical VO approaches need to
detect and filter these moving objects. Alternatively, we can use
an up-facing camera to track the movement with respect to the
ceiling, which represents a static and invariant space. This paper
presents Ceiling-DSO: an indoor ceiling-vision (CV) system based
on Direct Sparse Odometry (DSO). We take advantage of the
generic formulation of DSO to avoid making assumptions about
the observable shapes or landmarks on the ceiling, making the
method generic and applicable to multiple ceiling types. We built
a ceiling-vision dataset in a real-world scenario; we then used it
to test our approach with different DSO parameters to identify
the best fit for robot pose estimation. This paper provides a
qualitative and quantitative analysis of the obtained results that
showed an acceptable error rate compared to the ground truth.

Index Terms—Indoor, ceiling-vision, visual odometry, state
estimation, industrial environment, dynamic environment, DSO.

I. INTRODUCTION

State estimation is still an open research problem. To
accomplish an autonomous mobility task, a mobile robot must
estimate its pose in space.

Estimating the robot’s pose in an indoor environment re-
quires using adequate sensors. Wheel encoders are commonly
used for incremental pose estimation through odometry. How-
ever, due to mechanical coupling, wheel slippage, and the lack
of external correction, the trajectory estimated from wheel
encoders quickly drifts from the actual path [1], making it
unreliable for long-term usage.

Alternatively, we can use cameras to calculate the mobile
robot’s position and orientation incrementally; this technique
is known as Visual Odometry (VO) [2]. The term “visual
odometry” was coined for the first time by Nister et al. in [3];

1Abdelhak Bougouffa is with Université Paris-Saclay, ENS Paris-Saclay,
CNRS, SATIE, 91190 Gif-sur-Yvette, France. And with ez-Wheel, 16400 La
Couronne, France. ORCID: 0000-0002-0323-1424. Corresponding au-
thor’s mail: abdelhak.bougouffa@universite-paris-saclay.fr, a.bougouffa@ez-
wheel.com.

2Emmanuel Seignez is with Université Paris-Saclay, ENS Paris-Saclay,
CNRS, SATIE, 91190 Gif-sur-Yvette, France. emmanuel.seignez@universite-
paris-saclay.fr.

3Samiz Bouaziz is with Université Paris-Saclay, ENS Paris-Saclay,
CNRS, SATIE, 91190 Gif-sur-Yvette, France. samir.bouaziz@universite-
paris-saclay.fr.

4Florian Gardes is with ez-Wheel, 16400 La Couronne, France.
f.gardes@ez-wheel.com.

it consists of incrementally estimating the camera movement
from a perceived image stream.

VO approaches can fall into two main categories: indirect
(or feature-based) methods [4, 5, 6, 7] which requires pre-
processing through feature detection techniques to extract a
set of points of interest (POI); these POIs are then used to
minimize geometric error. And direct methods [8, 9] which
do not require feature extraction; instead, it directly uses the
raw pixel intensity values to minimize photometric error.

We expect several robots and humans to move around our
mobile industrial robot. In such a highly dynamic environment,
the VO estimation using a forward-facing camera can be chal-
lenging since we need to isolate and filter the moving objects
from the scene [10, 11], which tends to be a complicated and
resource-consuming task.

To solve the indoor dynamic environment issues, we can
use an up-facing camera instead of a forward-facing one. The
camera then observes the patterns in the ceiling, giving us a
way to track the robot’s movements with respect to the ceiling.
WooYeon and Kyoung are known for being the first to propose
such an approach [12]; they used the Harris corner detector
to extract corners from a monocular up-facing camera. The
corners are used as landmarks in an Extended Kalman Filter
(EKF) based SLAM framework, with a multi-view description
of landmarks to enhance data association.

In most ceiling vision-based odometry or SLAM ap-
proaches, the system makes strong assumptions about the
shapes and patterns we can observe on the ceiling. In such
approaches, known ceiling landmark classes are exploited (like
corners, lamps, speakers, fire alarms, etc.); these landmarks
are then used to track the pose and build the map using a
filtering framework [13, 14].

Others make assumptions about the ceiling boundaries. In
some use cases, the system can exploit the fact that the ceiling
occupies most of the ceiling-view images while walls occupy
the rest. The system then uses the ceiling images to build a
feature map by detecting the boundaries between the ceiling
and the walls. These features are then used to estimate the
map and the pose in an EKF-SLAM framework [15, 16],
or matched against a known blueprint using a Monte Carlo
Localization (MCL) based framework [17].

In other approaches, visual markers are placed on the ceiling
to facilitate the localization task. In [18], a set of easily de-
tectable artificial markers are placed on the ceiling. The image
stream from the up-facing camera is then processed to detect,
identify and find the camera’s position and orientation with

https://orcid.org/0000-0002-0323-1424

respect to the markers; the obtained information is then used
in a graph-based optimization algorithm within a Bayesian
estimation framework.

However, in an open warehouse or industrial space, most of
the previously stated assumptions do not hold. The working
space may be too wide to observe the ceiling and the walls in
the same image, and the ceilings of such a space tend to be
high and can contain inclined surfaces. To address these issues,
we propose to apply a generic visual odometry approach
to a ceiling-vision camera. We chose to use Direct Sparse
Odometry (DSO), which, being a direct approach, allows
tracking movement even in regions with few distinct features.
Our goal is to propose and evaluate a generic framework to
estimate the movements with respect to the ceiling without
making too many assumptions about the observable shapes or
landmarks.

This paper presents and evaluates Ceiling-DSO, a Direct
Sparse Odometry (DSO) based visual odometry with a ceiling
vision camera. We conducted our experiments using a modular
industrial mobile robot platform in a real-world environment.
We tested varying DSO parameters while observing and ana-
lyzing their effect on the quality of the estimated trajectories.
For comparison, we used a ground truth trajectory estimated
with a LiDAR-based SLAM. We also provide qualitative and
quantitative analysis of the obtained results.

The paper is organized as follows: Section II introduces
the original DSO formulation and the assumptions we made
in our Ceiling-DSO implantation; section III describes the
experimental platform we used, the robot’s sensors, the dataset
we built and used to validate this work, and the experiment
methodology; section IV presents and discusses the obtained
results; and lastly, section V lists the conclusions and the
perspectives of this work.

II. CEILING DIRECT SPARSE ODOMETRY

The Direct Sparse Odometry (DSO) [8] is a monocular,
direct visual odometry. In contrast to feature-based visual
odometry methods, where we use only a set of distinct features
to estimate camera motion, direct methods use information
from all image pixels. We can divide direct methods into three
categories: dense methods, which produce points cloud of high
density using all pixels in the image, giving -in most cases- a
heavy processing algorithm. Besides, semi-dense methods try
to reduce the number of processed points to get a reasonable
running time. Furthermore, sparse methods select only a small
subset of points to process.

DSO falls in the third category; it uses a gradient-based
strategy to uniformly select candidate points from high con-
trast regions. These candidate points are then used in a
photometric error minimization process.

As a direct method, DSO needs all the pixels of a frame
to be captured simultaneously; a camera that provides such
acquisition is called a global shutter camera. For rolling
shutter cameras, the image pixels are captured sequentially;
therefore, DSO state estimation with such a camera will

accumulate a systematic drift caused by this sequential ac-
quisition. However, this effect can be considered by modeling
or measuring it; for example, in [19], the authors proposed a
DSO-based method that imposes the rolling shutter constraint
to estimate the capture time.

We use the same formulation from the original DSO [8],
we model the sensor as a pin-hole camera, with K its intrinsic
matrix used for the geometric projection from 3D points into
image plan Ω as: ΠK : R3 → Ω and back-projection from
a 2D point (in image plan) and its depth information to 3D
world Π−1

K : Ω×R→ R3.
In DSO, a photometric calibration is considered from [20].

For a frame “i”, the camera observes the raw intensity
IRAW
i : Ω → [0, 255] of a pixel x, which can be defined

as a function of the irradiance Bi, the exposure time ti, the
non-linear response function G : R → [0, 255], and the lens
attenuation (vignetting) V : Ω → [0, 1]:

IRAW
i (x) = G(tiV (x)B(x)) (1)

From (1), the photometrically corrected image Ii can be
calculated by reverting the non-linear function, and removing
the vignetting effect on the image, as in (2):

Ii(x) ≜ tiBi(x) =
G−1(IRAW

i (x))

V (x)
(2)

The photometric error over all frames is defined as:

Ephoto =
∑
i∈N

∑
p∈Pi

∑
j∈obs(p)

Ei,p,j (3)

With N the total number of frames, Pi the set of points in
the i-th frame, j iterates over obs(p) which represents the set
of all frames from which the point p is visible, and Ei,p,j is
the partial error term defined as a weighted sum of the Huber
[21] norms calculated in a neighborhood pattern Np of the
point p:

Ei,p,j =
∑

p∈Np

wp

∥∥∥∥(Ij [p′]− bj)−
tje

aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

(4)

with Huber’s norm ∥α∥γ ≜

{
1
2α

2 for |α| < γ

γ · (|α| − 1
2γ) otherwise

and wp ≜
c2

c2 + ∥∇Ii(p)∥22
with c ∈ R

The Huber norm is a hybrid ℓ1/ℓ2-norm that is robust to
outliers and differentiable everywhere; hence, it provides a
suitable error measurement for gradient-based optimization.

The residual term in the sum (4) includes the difference
between the intensity value of the point p in the current i-th
frame and its intensity in all j-frames in which the point p
is visible. The intensity is modeled as an affine brightness
transfer function e−ai(Ii − bi) to be able to work with
unknown exposure times. The p′ in equation (4) represents
the projection in the j-th frame, of the point p seen in

the i-th frame, with dp its estimated depth. The projection
matrix depends on the partial camera motion transform ∆Tj,i

between the camera poses Ti and Tj .

p′ = ΠK(RΠ−1
K (p, dp) + t) (5)

with ∆Tj,i =

[
R t
0T 1

]
= TjT

−1
i

The error term in (4) is then minimized through 6 steps of
Gauss-Newton optimization. The optimization is done on the
se(3) Lie algebra, with the left-⊕ operator defined as:

⊕ : se(3)× SE(3) → SE(3) (6)

with

{
xi ∈ se(3), Ti ∈ SE(3)
xi ⊕Ti ≜ ex̂i ·Ti

More details about Lie groups in robotics and state estima-
tion can be found in [22].

The optimized parameters ζ ∈ SE(3)n × Rm include the
geometric parameters (poses, inverse depth values, and camera
intrinsics), and the photometric parameters (the (ai, bi) affine
brightness parameters). On the rigid motion manifold SE(3),
lets ζ0 denote the evaluation point of the manifold’s tangent
space, and x ∈ se(3)n × Rm the accumulated delta updates.
The current state estimate is then ζ = x ⊕ ζ0 with the
left-⊕ operator extended beyond SE(3) elements as a regular
addition.

The photometric error (3) is optimized in a Gauss-Newton
system defined as:

H = JTWJ (7)

b = −JTWr (8)

With r ∈ Rn is a vector grouping all residuals, W ∈ Rn×n

is the diagonal weights’ matrix, and J ∈ Rn×d is the Jacobian
of the residuals vector r.

The let rk a single residual from r, and Jk its associated
Jacobian row evaluated at x with a small additive increment
(δ + x), the residual depends on the current state variables
(Ti,Tj , dp, ai, aj , bi, bj) = x ⊕ ζ0, where: Ti and Tj the
poses of the camera at frames “i” and “j”, respectively, dp
the inverse depth, K the intrinsics matrix, and ai, aj , bi, bj
the affine brightness parameters for the frames “i” and “j”.

rk = (Ij [p
′(Ti,Tj , d,K)]− bj)−

tje
aj

tieai
(Ii − bi) (9)

Jk =
∂rk((δ+ x)⊕ ζ0)

∂δ
(10)

The Gauss-Newton optimization is performed over a sliding
window of Nf keyframes, points beyond this window get
marginalized.

In our Ceiling-DSO implementation, we used a simplified
version of the DSO formulation. We supposed a linear re-
sponse function ∀x ∈ Ω : G(x) = x, and we used lenses with
no vignetting, so ∀x ∈ Ω : V (x) = 1.

III. EXPERIMENT

A. Experimental platform

In our experiments, we used a prototype of a mobile indus-
trial robot (figure 1). The platform is a modular, differential-
drive robot powered by two ez-Wheel Safety Wheel Drive
(SWD®) self-contained motorized wheels. This prototype is an
evolution of our previously validated platform named Smart-
Trolley [23]. It targets moving high loads indoors, mainly for
usage in industrial environments. We designed and dimen-
sioned the robot to move a maximum of 2 tonnes (2000kg)
of loads. For safety purposes, the robot operates only at low
speeds (5kmh−1 ≈ 1.4m s−1).

Fig. 1. The SWD Starter Kit.

The robot is equipped with two incremental encoders, two
cameras, an Intel® RealSense™ D435i facing forward, and
an Intel® RealSense™ 455 facing upward. The robot also
integrates a safety laser range finder of type IDEC S2L, with
a maximum range of 30m.

The platform includes a Neousys Nuvo-7002LP embedded
industrial computer, based on an 8th Generation Intel® Coffee
lake Core™ i5 processor and a 16GB DDR4 2666/2400
SDRAM. It runs the Ubuntu 20.04 operating system with
the robotics middleware ROS Noetic. We used the embedded
computer to implement the differential-drive kinematic model
to control1 the robot and to collect raw sensor data. We
connected the embedded computer to a wireless transceiver,
which we use to drive the robot remotely using a wireless
joystick.

The platform uses the low-level obstacle detection provided
by the safety LiDAR. We configured two detection zones,
a large one mapped as a Safety-Limited Speed (SLS) zone
triggered when the robot approaches an obstacle, and a smaller
one mapped as a Safe Direction Indication (SDI) zone, used
to prohibit moving toward a close obstacle. We implemented
these detection and response behaviors at the lowest level.
The SDI and SLS signals are sent from the LiDAR to the
motorized wheels directly via safe Output Signal Switching
Device (OSSD) outputs.

1The controllers are available under the LGPL-2.1 license at
github.com/ezWheelSAS/swd_ros_controllers for ROS,
and at github.com/ezWheelSAS/swd_ros2_controllers for
ROS2.

https://github.com/ezWheelSAS/swd_ros_controllers
https://github.com/ezWheelSAS/swd_ros2_controllers

B. Dataset

We performed our experiment in an indoor open space of
21 × 15m. We collected raw sensor data from the odometry,
the images of the stereo up-facing camera, the forward-facing
camera, and the LiDAR ranges.

The ceiling in our test environment is inclined, with heights
between 4 and 6 meters. The shapes and landmarks on the
ceiling can differ from region to region; figure 2 includes
example images of the ceiling seen by the up-facing camera.

Fig. 2. Example images of the ceiling of the test environment as seen by the
up-facing camera.

C. Methodology

We evaluated the Ceiling-DSO on a set of sequences from
our collected dataset. We studied the influence of varying input
images size, frame rate, and maximum size of the optimization
window on the quality of the estimated trajectory and the
execution time. The goal of such an evaluation is to identify
good parameter combinations for real-time usage.

We used the data from the LiDAR to calculate a ground truth
trajectory using the open-source LaMa SLAM [24]. The map
of the test environment calculated using this SLAM algorithm
is represented in figure 3.

We conducted our experiments on a planar surface with a
camera, and a 2D LiDAR fixed on the robot. We denote the
2D ground truth trajectory G, DSO uses a monocular camera;
hence, its estimated trajectory P is only valid up to a scale λ ∈
R+. The DSO trajectory is 3-dimensional, while the ground
truth is only 2-dimensional. Since the robot movement surface
is planar, we can compare the two trajectories after alignment.

To align the estimated trajectories and prepare them for
comparison, we use an approach similar to [25]. We first
synchronize the two trajectories using ROS’ global clock. Let’s
denote the n synchronized ground truth and visual odometry
positions G′ and P ′, respectively, defined as:

G′ = {g | ∥tp − tg∥ < τ}
P ′ = {p | ∥tp − tg∥ < τ} with

∀g ∈ G
∀p ∈ P
τ ∈ R+

(11)

With tp and tg are the timestamps of points p and g,
respectively, and τ is the synchronization threshold.

We estimate the global similarity transformation S ∈
Sim(3) between the synchronized trajectories of the ground
truth and the visual odometry (G′ and P ′ respectively). We
express the similarity transformation as:

Fig. 3. The test environment’s map.

S ≜

[
λR t
0T 1

]
(12)

For convenience, we write S = (R, t, λ), where R ∈ SO(3)
is the 3D rotation, t ∈ R3 is the translation and λ ∈ R+ is
the scale.

We can express the alignment problem as a least-squares
problem, applied to the minimization of the error between
the synchronous pose pairs pi ∈ P ′ and gi ∈ G′. The

optimal global alignment transformation
⋆

S = (
⋆

R,
⋆
t,

⋆

λ) can
be expressed as:

⋆

S = argmin
R,t,λ

n∑
i=0

∥gi − (λRpi + t)∥2 (13)

The VO estimated trajectory P is then aligned using
⋆

S,

giving
⋆

P such as:

∀p ∈ P :
⋆

P = {
⋆

λ
⋆

Rp+
⋆
t} (14)

We use metrics similar to [25], we evaluate the relative
errors (REs) between the ground truth and the ceiling DSO
trajectory. We then consider the euclidean norm of the position
error to evaluate the obtained results.

IV. RESULTS AND DISCUSSION

We tested Ceiling-DSO multiple times on multiple se-
quences from our collected dataset. In this paper we present
results obtained on a square-like sequence.

First, we provide qualitative results where we align and
trace the aligned trajectories compared to the ground truth. We

tested a total of 24 trajectories per sequence, iterating over all
combinations of tested parameters: image size of 848×480 or
424× 240, a frame rate of 3, 6, 15, or 30fps, and a maximum
optimization window size of 5, 7, or 15.

Considering the trajectories estimated from the test se-
quence, figure 4 show the effect of changing frame rate and
image size while fixing the maximum optimization window
size at 7. We noticed that the trajectory error increases when
using frame rates lower than 15fps. We need to emphasize
that the choice of frame rate is also linked to the robot speed.
For robots moving at high speeds, streams of higher frame
rates will be needed. As DSO runs a coarse-to-fine matching,
increasing the image size can help refine the estimation;
however, our tests showed no significant effect when reducing
the image size from 848× 480 to 424× 240.

0 2 4 6 8 10

X [m]

0

2

4

6

8

Y
[m

]

Ceiling-DSO (with Max Win. = 7)

Ground truth −→
↓ Frame Rate — Img. Size →
3

6

15

30

424x240 848x480

Fig. 4. Trajectories over multiple image sizes and input frame rates at a fixed
optimization window size of 7.

Figure 5 show the effect of changing the image size and the
maximum optimization window size on the trajectories while
fixing the frame rate to 30fps. These trajectories show slight
improvements when increasing the maximum window size.
As the optimization step performs a local bundle adjustment,
using a larger window size should help increase the accuracy
in more complex trajectories; however, our tests showed an
acceptable accuracy when using a maximum window size of
7.

For the quantitative analysis, we plot the euclidean norm
of the relative position error ϵi =

√
∆x2

i +∆y2i +∆z2i

0 2 4 6 8 10

X [m]

0

2

4

6

8

Y
[m

]

Ceiling-DSO (with Frame rate = 30)

Ground truth −→
↓ Max Win. — Img. Size →
5

7

15

424x240 848x480

Fig. 5. Trajectories over multiple image sizes and maximum optimization
window sizes at a fixed frame rate of 30fps.

as a function of traveled distance. Figure 6 summarize the
relative error for the test sequence, varying one parameter at
a time while fixing the two others to defaults (default value
848 × 420 for image size, 30 for frame rate, and 7 for the
maximum window size). We can see that the most drastic
errors occurred when decreasing the frame rate below 15fps.
For other parameters, we have noticed no significant influence.

To better see the relative error distribution across the whole
trajectory and for each combination of parameters, we provide
figure 7, which shows box plots of relative error with respect
to tested parameters, highlighting for each combination the
estimated distribution characterized by the box which delimits
the first and third quartiles (Q1 and Q3), the second quartile
Q2 a.k.a. the median, and the whiskers which extend from
the box marking the variability outside the lower and upper
quartiles within 1.5×IQR = 1.5×(Q3−Q1), the IQR acronym
stands for interquartile range.

The red dashed line in figure 7 bisects the sorted medians
into two parts. We select the combinations of parameters of
the first half, which have the lesser relative errors. Most of
the second half, which contains combinations of high relative
errors, correlates with the use of a frame rate less than 15fps.
We can then define a frame rate regulation strategy based on
the robot’s movement; when moving on a straight line and at
low speeds, we can lower the frame rate, while the frame rate
should be increased when the robot is steering or accelerating.

0

5

10

15
R

el
at

iv
e

er
ro

r
[c

m
]

Image size

424x240 848x480

0

5

10

15

R
el

at
iv

e
er

ro
r

[c
m

]

Frame rate

3 6 15 30

0 5 10 15 20 25 30 35

Traveled distance [m]

0

5

10

15

R
el

at
iv

e
er

ro
r

[c
m

]

Max win size

5 7 15

Fig. 6. The relative error between the ground truth and DSO trajectory with
multiple frame rate, image size, and maximum optimization window size
settings (Seq1).

V. CONCLUSION

We presented in this paper Ceiling-DSO, an indoor ceiling-
vision odometry system based on DSO, we designed our
system for usage with indoor mobile industrial robots. The
main advantage of Ceiling-DSO is its adequacy for indoor
industrial dynamic environments; by observing the ceiling, the
system is no more disturbed with the objects moving around
the robot. By exploiting the generic DSO formulation, our
system avoids making assumptions about the shape or the
content of the ceiling, making it a generic solution which
can be used in different ceiling types. We built a real-world
ceiling-vision dataset with LiDAR sensor data for usage as
ground truth. We used this dataset to validated our approach
by comparing the Ceiling-DSO estimated trajectories to the
ground truth. We also studied the effect of changing the input
image size, the input frame rate, and the optimization window
size to identify a suitable combination of parameters.

The results showed no significant influence in changing the
input image size; furthermore, the estimated trajectory and the
run time got slightly affected when changing the input frame
rate. In our tests, a frame rate of 15fps gave a good tradeoff
between accuracy and run time. Varying the optimization
window size showed no significant influence on the accuracy
of the estimated trajectory while heavily affecting the run time.
Our tests showed that using 7 as the maximum window size

0 1 2 3 4 5

Rel. error [cm]

I:848x480 F:03 W:07

I:848x480 F:03 W:05

I:424x240 F:03 W:07

I:424x240 F:03 W:05

I:424x240 F:06 W:05

I:848x480 F:03 W:15

I:424x240 F:03 W:15

I:848x480 F:06 W:07

I:424x240 F:06 W:15

I:848x480 F:06 W:15

I:424x240 F:06 W:07

I:424x240 F:15 W:15

I:848x480 F:15 W:15

I:424x240 F:15 W:05

I:848x480 F:15 W:05

I:848x480 F:06 W:05

I:424x240 F:30 W:15

I:424x240 F:15 W:07

I:848x480 F:30 W:05

I:848x480 F:15 W:07

I:424x240 F:30 W:05

I:424x240 F:30 W:07

I:848x480 F:30 W:15

I:848x480 F:30 W:07

Fig. 7. Box plot of relative errors for each combination of tested parameters
(I: image size, F: frame rate, W: optimization window size). The box delimits
the first and third quartiles. The orange line marks the median. The lines
(whiskers) extend from the box showing the variability within 1.5 × IQR.
Boxes are sorted by the medians of relative errors.

gives reasonable results in both timing and accuracy.
This work defines a baseline for our future research; we

plan to develop a sensor fusion method for online metric
scale estimation to get the metric scale alongside with the
DSO estimated pose. Furthermore, a map management and
loop-closing strategies are planned to be added to our system
to provide a complete SLAM solution. We plan also to
publish the multi-sensor dataset we built, including the stereo
image streams from the forward-facing camera and the up-
facing camera, the LiDAR data, and the data from the inertial
measurement units (IMUs) of the cameras. This will allow
other scientists to use a dataset of a real-world scenario to test

ceiling-vision algorithms and compare them with a wide range
of ordinary visual odometry/SLAM algorithms of monocular,
stereo and/or inertial approaches.

REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza,
Introduction to Autonomous Mobile Robots, 2nd ed. The
MIT Press, 2011.

[2] D. Scaramuzza and F. Fraundorfer, “Visual Odome-
try [Tutorial],” IEEE Robotics Automation Magazine,
vol. 18, no. 4, pp. 80–92, Dec. 2011.

[3] D. Nister, O. Naroditsky, and J. Bergen, “Visual odome-
try,” in Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004., vol. 1, Jun. 2004, pp. I–I.

[4] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-
D Cameras,” IEEE Transactions on Robotics, vol. 33,
no. 5, pp. 1255–1262, Oct. 2017.

[5] D. N. S. D. Awang Salleh and E. Seignez, “Swift
Path Planning: Vehicle Localization by Visual Odometry
Trajectory Tracking and Mapping,” Unmanned Systems,
vol. 06, no. 04, pp. 221–230, Aug. 2018.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: Real-Time Single Camera SLAM,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[7] D. N. S. D. Awang Salleh and E. Seignez, “Longitudinal
error improvement by visual odometry trajectory trail
and road segment matching,” IET Intelligent Transport
Systems, vol. 13, no. 2, pp. 313–322, 2019.

[8] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse
Odometry,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 3, pp. 611–625, Mar.
2018.

[9] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast
semi-direct monocular visual odometry,” in 2014 IEEE
International Conference on Robotics and Automation
(ICRA), May 2014, pp. 15–22.

[10] C. Sheng, S. Pan, W. Gao, Y. Tan, and T. Zhao,
“Dynamic-DSO: Direct Sparse Odometry Using Objects
Semantic Information for Dynamic Environments,” Ap-
plied Sciences, vol. 10, no. 4, p. 1467, Jan. 2020.

[11] D.-H. Kim and J.-H. Kim, “Effective Background Model-
Based RGB-D Dense Visual Odometry in a Dynamic
Environment,” IEEE Transactions on Robotics, vol. 32,
no. 6, pp. 1565–1573, Dec. 2016.

[12] J. WooYeon and M. L. Kyoung, “CV-SLAM: A new ceil-
ing vision-based SLAM technique,” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, Aug. 2005, pp. 3195–3200.

[13] D. Y. Kim, H. Choi, H. Lee, and E. Kim, “A new cvS-
LAM exploiting a partially known landmark association,”
Advanced Robotics, vol. 27, no. 14, pp. 1073–1086, Oct.
2013.

[14] S. Hwang and J. Song, “Monocular Vision-Based SLAM
in Indoor Environment Using Corner, Lamp, and Door
Features From Upward-Looking Camera,” IEEE Trans-
actions on Industrial Electronics, vol. 58, no. 10, pp.
4804–4812, Oct. 2011.

[15] H. Choi, D. Y. Kim, J. P. Hwang, C.-W. Park, and E. Kim,
“Efficient Simultaneous Localization and Mapping Based
on Ceiling-View: Ceiling Boundary Feature Map Ap-
proach,” Advanced Robotics, vol. 26, no. 5-6, pp. 653–
671, Jan. 2012.

[16] H. Choi, R. Kim, and E. Kim, “An Efficient Ceiling-
view SLAM Using Relational Constraints Between Land-
marks:,” International Journal of Advanced Robotic Sys-
tems, Jan. 2014.

[17] A. Ribacki, V. A. M. Jorge, M. Mantelli, R. Maffei,
and E. Prestes, “Vision-Based Global Localization Using
Ceiling Space Density,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May
2018, pp. 3502–3507.

[18] Y. Li, S. Zhu, Y. Yu, and Z. Wang, “An improved
graph-based visual localization system for indoor mo-
bile robot using newly designed markers,” International
Journal of Advanced Robotic Systems, vol. 15, no. 2, p.
1729881418769191, Mar. 2018.

[19] D. Schubert, N. Demmel, V. Usenko, J. Stückler, and
D. Cremers, “Direct Sparse Odometry with Rolling Shut-
ter,” in Computer Vision – ECCV 2018, ser. Lecture Notes
in Computer Science, V. Ferrari, M. Hebert, C. Sminchis-
escu, and Y. Weiss, Eds. Cham: Springer International
Publishing, 2018, pp. 699–714.

[20] J. Engel, V. Usenko, and D. Cremers, “A Photometrically
Calibrated Benchmark For Monocular Visual Odometry,”
arXiv:1607.02555 [cs], Oct. 2016.

[21] P. J. Huber, “Robust Estimation of a Location Parameter,”
The Annals of Mathematical Statistics, vol. 35, no. 1, pp.
73–101, Mar. 1964.

[22] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory
for state estimation in robotics,” arXiv:1812.01537 [cs],
Nov. 2020.

[23] A. Bougouffa, E. Seignez, S. Bouaziz, and F. Gardes,
“SmartTrolley: An Experimental Mobile Platform for
Indoor Localization in Warehouses,” in 2020 3rd Interna-
tional Conference on Robotics, Control and Automation
Engineering (RCAE), Nov. 2020, pp. 108–115.

[24] E. Pedrosa, A. Pereira, and N. Lau, “Fast Grid SLAM
Based on Particle Filter with Scan Matching and Mul-
tithreading,” in 2020 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC).
Ponta Delgada, Portugal: IEEE, Apr. 2020, pp. 194–199.

[25] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative
Trajectory Evaluation for Visual(-Inertial) Odometry,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2018, pp. 7244–7251.

	Introduction
	Ceiling Direct Sparse Odometry
	Experiment
	Experimental platform
	Dataset
	Methodology

	Results and discussion
	Conclusion

