
Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Document Title
Guidelines for the use of the
C++14 language in critical and
safety-related systems

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 839

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-03

Document Change History
Date Release Changed by Description

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Table of Contents

1 Background 7

2 The vision 8

2.1 Rationale for the production of AUTOSAR C++14 8
2.2 Objectives of AUTOSAR C++14 . 8

3 Scope 10

3.1 Allowed features of C++ language . 10
3.2 Limitations . 13

4 Using AUTOSAR C++14 14

5 Introduction to the rules 15

5.1 Rule classification . 15
5.1.1 Rule classification according to compatibility with MISRA . . 15
5.1.2 Rule classification according to obligation level 15
5.1.3 Rule classification according to enforcement by static analysis 15
5.1.4 Rule classification according to allocated target 16

5.2 Organization of rules . 16
5.3 Exceptions to the rules . 16
5.4 Redundancy in the rules . 16
5.5 Presentation of rules . 17
5.6 Understanding the issue references . 17
5.7 Scope of rules . 17

6 AUTOSAR C++14 coding rules 18

6.0 Language independent issues . 18
6.0.1 Unnecessary constructs . 18
6.0.2 Storage . 23
6.0.3 Runtime failures . 23
6.0.4 Arithmetic . 24

6.1 General . 26
6.1.1 Scope . 26
6.1.2 Normative references . 28
6.1.4 Implementation compliance 29

6.2 Lexical conventions . 30
6.2.3 Character sets . 30
6.2.5 Trigraph sequences . 31
6.2.6 Alternative tokens . 31
6.2.8 Comments . 32
6.2.9 Header names . 36
6.2.11 Identifiers . 36
6.2.14 Literals . 41

6.3 Basic concepts . 44

3 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.3.1 Declarations and definitions 44
6.3.2 One Definition Rule . 46
6.3.3 Scope . 47
6.3.4 Name lookup . 51
6.3.9 Types . 51

6.4 Standard conversions . 52
6.4.5 Integral promotions . 52
6.4.7 Integral conversion . 55
6.4.10 Pointer conversions . 57

6.5 Expressions . 58
6.5.0 General . 58
6.5.1 Primary expression . 67
6.5.2 Postfix expressions . 75
6.5.3 Unary expressions . 83
6.5.6 Multiplicative operators . 84
6.5.8 Shift operators . 85
6.5.10 Equality operators . 86
6.5.14 Logical AND operator . 86
6.5.16 Conditional operator . 87
6.5.18 Assignment and compound assignment operation 87
6.5.19 Comma operator . 87
6.5.20 Constant expression . 88

6.6 Statements . 88
6.6.2 Expression statement . 88
6.6.3 Compound statement or block 89
6.6.4 Selection statements . 89
6.6.5 Iteration statements . 91
6.6.6 Jump statements . 94

6.7 Declaration . 96
6.7.1 Specifiers . 96
6.7.2 Enumeration declaration . 104
6.7.3 Namespaces . 109
6.7.4 The asm declaration . 109
6.7.5 Linkage specification . 111

6.8 Declarators . 115
6.8.0 General . 115
6.8.2 Ambiguity resolution . 115
6.8.3 Meaning of declarators . 116
6.8.4 Function definitions . 116
6.8.5 Initilizers . 118

6.9 Classes . 125
6.9.3 Member function . 125
6.9.5 Unions . 128
6.9.6 Bit-fields . 128

6.10 Derived Classes . 130
6.10.1 Multiple base Classes . 130

4 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.10.2 Member name lookup . 132
6.10.3 Virtual functions . 133

6.11 Member access control . 139
6.11.0 General . 139
6.11.3 Friends . 142

6.12 Special member functions . 142
6.12.0 General . 142
6.12.1 Constructors . 143
6.12.4 Destructors . 149
6.12.6 Initialization . 151
6.12.7 Construction and destructions 153
6.12.8 Copying and moving class objects 155

6.13 Overloading . 167
6.13.1 Overloadable declarations 167
6.13.2 Declaration matching . 170
6.13.3 Overload resolution . 173
6.13.5 Overloaded operators . 174
6.13.6 Build-in operators . 175

6.14 Templates . 176
6.14.0 General . 176
6.14.1 Template parameters . 176
6.14.5 Template declarations . 179
6.14.6 Name resolution . 179
6.14.7 Template instantiation and specialization 179
6.14.8 Function template specializations 181

6.15 Exception handling . 183
6.15.0 General . 186
6.15.1 Throwing an exception . 201
6.15.2 Constructors and destructors 211
6.15.3 Handling an exception . 215
6.15.4 Exception specifications . 225
6.15.5 Special functions . 234

6.16 Preprocessing directives . 241
6.16.0 General . 241
6.16.1 Conditional inclusion . 244
6.16.2 Source file inclusion . 245
6.16.3 Macro replacement . 247
6.16.6 Error directive . 248
6.16.7 Pragma directive . 249

6.17 Library introduction - partial . 249
6.17.1 General . 249
6.17.2 The C standard library . 251
6.17.3 Definitions . 252

6.18 Language support library - partial . 253
6.18.0 General . 253
6.18.1 Types . 254

5 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.18.2 Implementation properties 258
6.18.5 Dynamic memory management 259
6.18.9 Other runtime support . 268

6.19 Diagnostics library - partial . 272
6.19.4 Error numbers . 272

6.23 Containers library - partial . 272
6.23.1 General . 272

6.27 Input/output library - partial . 274
6.27.1 General . 274

7 References 277

A Traceability to existing standards 278

A.1 Traceability to MISRA C++:2008 . 278
A.2 Traceability to HIC++ v4.0 . 297
A.3 Traceability to JSF . 309
A.4 Traceability to SEI CERT C++ . 325
A.5 Traceability to C++ Core Guidelines . 334

B Glossary 366

6 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 Background

See chapter 1. Background" in MISRA C++:2008, which is applicable for this document
as well.

This document specifies coding guidelines for the usage of the C++14 language as
defined by ISO/IEC 14882:2014 [3], in the safety-related and critical systems. The
main application sector is automotive, but it can be used in other embedded application
sectors.

This document is defined as an update of MISRA C++:2008 [6]. The rules that are
adopted from MISRA C++ without modifications, are only referred in this document
by ID and rule text, without repeating their complete contents. Therefore, MISRA
C++:2008 is required prerequisite for the readers of this document. MISRA C++:2008
can be purchased over MISRA web store. The reference to the adopted MISRA
C++:2008 rules is not considered as a reproduction of a part of MISRA C++:2008.

Most of the rules are automatically enforceable by static analysis. Some are partially
enforceable or even non-enforceable and they need to be enforced by a manual code
review.

Most of the rules are typical coding guidelines i.e. how to write code. However, for
the sake of completeness and due to the fact that some rules are relaxed with respect
to MISRA C+++:2008 (e.g. exceptions and dynamic memory is allowed), there are
also some rules related to compiler toolchain and process-related rules concerning
e.g. analysis or testing.

This document is not about the style of code in a sense of naming conventions, layout
or indentation. But as there are several C++ code examples, they need some form of
style guide convention. Therefore, the code examples are written in a similar way like
the MISRA C++:2008 code examples.

7 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2 The vision

2.1 Rationale for the production of AUTOSAR C++14

Currently, no appropriate coding standards for C++14 or C++11 exist for the use
in critical and safety-related software. Existing standards are incomplete, covering
old C++ versions or not applicable for critical/safety-related. In particular, MISRA
C++:2008 does not cover C++11/14. Therefore this document is to cover this gap.

MISRA C++:2008 is covering the C++03 language, which is 13 years old at the time of
writing this document. In the meantime, the market evolved, by:

1. substantial evolution/improvement of C++ language

2. more widespread use of object-oriented languages in safety-related and critical
environments

3. availability of better compilers

4. availability of better testing, verification and analysis tools appropriate for C++

5. availability of better development methodologies (e.g. continuous integration) that
allow to detect/handle errors earlier

6. higher acceptance of object-oriented languages by safety engineers and

7. strong needs of development teams for a powerful C++ language features

8. creation of ISO 26262 safety standard, which HIC++, JSF++, CERT C++, C++
Core Guidelines

As a result, MISRA C++:2008 requires an update. This document is therefore an add-
on on MISRA and it specifies:

1. which MISRA rules are obsolete and do not need to be followed

2. a number of updated MISRA rules (for rules that only needed some
improvements)

3. several additional rules.

Moreover, at the time of writing, MISRA C++:2008 was already not complete / fully
appropriate. For example, it completely disallows dynamic memory, standard libraries
are not fully covered, security is not covered.

2.2 Objectives of AUTOSAR C++14

This document specifies coding guidelines for the usage of the C++14 language, in
the safety-related and critical environments, as an update of MISRA C++:2008, based
on other leading coding standards and the research/analysis done by AUTOSAR. The

8 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

main application sector is automotive, but it can be used in other embedded application
sectors.

The AUTOSAR C++14 Coding Guidelines addresses high-end embedded micro-
controllers that provide efficient and full C++14 language support, on 32 and 64 bit
micro-controllers, using POSIX or similar operating systems.

For the ISO 26262 clauses allocated to software architecture, unit design and
implementation, the document provides an interpretation of how these clauses apply
specifically to C++.

9 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

3 Scope

See also chapter "3. Scope" in MISRA C++:2008, which is applicable for this document
as well.

This document specifies coding guidelines for the usage of the C++14 language as
defined by ISO/IEC 14882:2014 [3], in the safety-related and critical environments, as
an update of MISRA C++:2008. The main application sector is automotive, but it can
be used in other embedded application sectors.

The document is built using the MISRA C++:2008 document structure, document logic
and convention and formatting. Each rule is specified using the MISRA C++:2008
pattern and style.

Several rules from MISRA C++:2008 were adopted without modifications. See A.1 for
the comparison. The adopted MISRA rules are only referenced by ID and title, without
providing the full contents.

The standard specifies 342 rules, from which:

1. 154 rules are adopted without modifications from MISRA C++:2008 (this means
67% of MISRA is adopted without modifications).

2. 131 rules are derived/based on existing C++ standards

3. 57 rules are based on research or other literature or other resources.

The MISRA C++:2008 rules are referenced by ID and title. The inclusion of ID and of
the rule title for the adopted rules is considered not be be a "reproduction".

Several other coding standards and resources are referenced in this document or used
as a basis of the rules in this document:

1. Joint Strike Fighter Air Vehicle C++ Coding Standards [7]

2. High Integrity C++ Coding Standard Version 4.0 [8]

3. CERT C++ Coding Standard [9]

4. C++ Core Guidelines [10]

5. Google C++ Style Guide [11]

3.1 Allowed features of C++ language

This document allows most of C++ language features, but with detailed restrictions, as
expressed by the rules. This has an important impact on the compiler toolchains, as
well as other software development tools, as these tools need to provide a full support
of the C++ features (as long as these features are used in accordance to the coding
guidelines).

10 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

The document allows in particular the usage of dynamic memory, exceptions,
templates, inheritance and virtual functions. On the other side, the compiler toolchain
needs to provide them correctly. In most cases, this requires a tool qualification.

The explanatory summary table 3.1 lists features introduced in C++11 and C++14
and it also summarizes pre-C++11 features, together with their support by the coding
standard.

Category: Feature: Since: May be
used:

Shall not
be used:

6.0 Language independent
issues

Dynamic memory management - X
Floating-point arithmetic - X

6.1 General
Operators new and delete - X
malloc and free functions - X

Sized deallocation C++11 X
6.2 Lexical conventions

Namespaces - X
6.3 Basic Concepts

Fixed width integer types C++11 X
6.4 Standard Conversions

Nullptr pointer literal C++11 X
6.5 Expressions

C-style casts - X

const_cast conversion - X

dynamic_cast conversion - X

reinterpret_cast conversion - X

static_cast conversion - X
Lambda expressions C++11 X
Binary literals C++14 X

6.6 Statements
Range-based for loops C++11 X
goto statement - X

6.7 Declaration
constexpr specifier C++11 X
auto specifier C++11 X
decltype specifier C++11 X
Generic lambda expressions C++14 X
Trailing return type syntax C++11 X
Return type deduction C++14 X

typedef specifier - X

using specifier C++11 X
Scoped enumerations C++11 X

11 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

std::initializer_list C++11 X
asm declaration - X

6.8 Declarators
Default arguments - X
Variadic arguments - X

List initialization C++11 X
6.9 Classes

Unions - X

Bit-fields - X
6.10 Derived Classes

Inheritance - X
Multiple inheritance - X

Virtual functions - X
override specifier C++11 X
final specifier C++11 X

6.11 Member Access Control
friend declaration - X

6.12 Special Member Functions
Defaulted and deleted functions C++11 X
Delegating constructors C++11 X
Member initializer lists - X
Non-static data member
initializer

C++11 X

explicit specifier - X
Move semantics C++11 X

6.13 Overloading
User-defined literals C++11 X

Digit sequences separators ’ C++14 X
6.14 Templates

Variadic templates C++11 X
Variable templates C++14 X

6.15 Exception Handling
Exceptions - X
Function-try-blocks - X

Dynamic exception specification - X

noexcept specifier C++11 X
6.16 Preprocessing Directives

Static assertion C++11 X
Implementation defined
behavior control (#pragma
directive)

- X

Table 3.1: C++14 features

12 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

3.2 Limitations

In the current release, the following are known limitations:

1. The rule set for parallel computing is not provided

2. The rule set for C++ standard libraries is only initial (incomplete)

3. The rule set for security (as long as it is not common to critical software or safety-
related software) is not provided

4. The traceability to JSF, ISO CPP contains some non-analyzed rules

5. The traceability to ISO 26262 is not provided

The limitations will be addressed in future versions of this document.

If the user of this document uses parallel computing, C++ standard libraries or develops
security-related software, then they are responsible to apply their own guidelines for
these topics.

13 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4 Using AUTOSAR C++14

See chapter "4. Using MISRA C++" in MISRA C++:2008, which is applicable for this
document as well.

14 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 Introduction to the rules

5.1 Rule classification

5.1.1 Rule classification according to compatibility with MISRA

The rules in this document are defined as a “delta” to MISRA C++:2008. Therefore,
the rules are of two types from this perspective:

5.1.2 Rule classification according to obligation level

The rules are classified according to obligation level:

• required: These are mandatory requirements placed on the code. C++ code that
is claimed to conform to AUTOSAR C++14 shall comply with every “Required”
rule. Formal deviations must be raised where this is not the case.

• advisory: These are requirements placed on the code that should normally
be followed. However they do not have the mandatory status of “Required”
rules. Note that the status of “Advisory” does not mean that these items can
be ignored, but that they should be followed as far as is reasonably practical.
Formal deviations are not necessary for “Advisory” rules, but may be raised if it
is considered appropriate.

5.1.3 Rule classification according to enforcement by static analysis

The rules are classified according to enforcement by static code analysis tools:

• automated: These are rules that are automatically enforceable by means of static
analysis.

• partially automated: These are the rules that can be supported by static code
analysis, e.g. by heuristic or by covering some error scenarios, as a support for
a manual code review.

• non-automated: These are the rules where the static analysis cannot provide any
reasonable support by a static code analysis and they require other means, e.g.
manual code review or other tools.

Most of the rules are automatically enforceable by a static analysis. A static code
analysis tool that claims a full compliance to this standard shall fully check all
“enforceable static analysis” rules and it shall check the rules that are “partially
enforceable by static analysis” to the extent that is possible/reasonable.

The compliance to all rules that are not “enforceable by static analysis” shall be ensured
by means of manual activities like review, analyses.

15 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5.1.4 Rule classification according to allocated target

Finally, the rules are classified according to the target:

• implementation: These are the rules that apply to the implementation of the
project (code and to software design and architecture).

• verification: These are the rules that apply to the verification activities (e.g. code
review, analysis, testing).

• toolchain: These are the rules that apply to the toolchain (preprocessor, compiler,
linker, compiler libraries).

• infrastructure: These are the rules that apply to the operating system and the
hardware.

5.2 Organization of rules

The rules are organized in chapter 6, similar to the structure of ISO/IEC 14882:2014
document. In addition, rules that do not fit to this structure are defined in chapter 6.0.

5.3 Exceptions to the rules

Some rules contain an Exception section that lists one or more exceptional conditions
under which the rule need not be followed. These exceptions effectively modify the
headline rule.

5.4 Redundancy in the rules

There are a few cases within this document where rules are partially overlapping
(redundant). This is intentional.

Firstly, this approach brings often more clarity and completeness. Secondly, it is
because several redundant rules are reused from MISRA C++:2008. Third, it may be
that the developer chooses to raise a deviation against one of the partially overlapping
rules, but not against others.

For example, goto statement is prohibited by rule A6-6-1 and the usage of goto is
restricted by rules M6-6-1 and M6-6-2 that are overlapping to A6-6-1. So if the
developer decides to deviate from A6-6-1, they can still comply to M6-6-1 and M6-6-2.

16 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5.5 Presentation of rules

The individual rules are presented in the format similar to the format of MISRA
C++:2008.

5.6 Understanding the issue references

In this document release, references to C++ Language Standard are not provided.

5.7 Scope of rules

While the majority of rules can be applied within a single translation unit, all rules shall
be applied with the widest possible interpretation.

In general, the intent is that all the rules shall be applied to templates. However, some
rules are only meaningful for instantiated templates.

Unless otherwise specified, all rules shall apply to implicitly-declared or implicitly-
defined special member functions (e.g. default constructor, copy constructor, copy
assignment operator and destructor).

17 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6 AUTOSAR C++14 coding rules

This chapter contains the specification of AUTOSAR C++14 coding rules.

6.0 Language independent issues

6.0.1 Unnecessary constructs

Rule M0-1-1 (required, implementation, automated)
A project shall not contain unreachable code.

See MISRA C++ 2008 [6]

Rule M0-1-2 (required, implementation, automated)
A project shall not contain infeasible paths.

See MISRA C++ 2008 [6]

Note: A path can also be infeasible because of a call to constexpr function which
returned value, known statically, will never fulfill the condition of a condition statement.

Rule M0-1-3 (required, implementation, automated)
A project shall not contain unused variables.

See MISRA C++ 2008 [6]

Rule M0-1-4 (required, implementation, automated)
A project shall not contain non-volatile POD variables having only one use.

See MISRA C++ 2008 [6]

Rule M0-1-5 (required, implementation, automated)
A project shall not contain unused type declarations.

See MISRA C++ 2008 [6]

Rule A0-1-1 (required, implementation, automated)
A project shall not contain instances of non-volatile variables being given
values that are not subsequently used.

Rationale

Known as a DU dataflow anomaly, this is a process whereby there is a data flow in
which a variable is given a value that is not subsequently used. At best this is inefficient,

18 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

but may indicate a genuine problem. Often the presence of these constructs is due to
the wrong choice of statement aggregates such as loops.

See: DU-Anomaly.

Exception

Loop control variables (see Section 6.6.5) are exempt from this rule.

Example

1 //% $Id: A0-1-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <array>

3 #include <cstdint>

4 std::uint8_t fn1(std::uint8_t param) noexcept

5 {

6 std::int32_t x{

7 0}; // Non-compliant - DU data flow anomaly; Variable defined,

8 // but not used

9 if (param > 0)

10 {

11 return 1;

12 }

13 else

14 {

15 return 0;

16 }

17 }

18 std::int32_t fn2() noexcept

19 {

20 std::int8_t x{10U}; // Compliant - variable defined and will be used

21 std::int8_t y{20U}; // Compliant - variable defined and will be used

22 std::int16_t result = x + y; // x and y variables used

23

24 x = 0; // Non-compliant - DU data flow anomaly; Variable defined, but x is

25 // not subsequently used and goes out of scope

26 y = 0; // Non-compliant - DU data flow anomaly; Variable defined, but y is

27 // not subsequently used and goes out of scope

28 return result;

29 }

30 std::int32_t fn3(std::int32_t param) noexcept

31 {

32 std::int32_t x{param +

33 1}; // Compliant - variable defined, and will be used in

34 // one of the branches

35 // However, scope of x variable could be reduced

36 if (param > 20)

37 {

38 return x;

39 }

40 return 0;

41 }

42 std::int32_t fn4(std::int32_t param) noexcept

19 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

43 {

44 std::int32_t x{param +

45 1}; // Compliant - variable defined, and will be used in

46 // some of the branches

47 if (param > 20)

48 {

49 return x + 1;

50 }

51 else if (param > 10)

52 {

53 return x;

54 }

55 else

56 {

57 return 0;

58 }

59 }

60 void fn5() noexcept

61 {

62 std::array<std::int32_t, 100> arr{};

63 arr.fill(1);

64

65 constexpr std::uint8_t limit{100U};

66 std::int8_t x{0};

67 for (std::uint8_t i{0U}; i < limit; ++i) // Compliant by exception - on the

68 // final loop, value of i defined will

69 // not be used

70 {

71 arr[i] = arr[x];

72 ++x; // Non-compliant - DU data flow anomaly on the final loop, value

73 // defined and not used

74 }

75 }

See also

• MISRAC++2008: 0-1-6 A project shall not contain instances of non-volatile
variables being given values that are never subsequently used.

Rule A0-1-2 (required, implementation, automated)
The value returned by a function having a non-void return type that is not an
overloaded operator shall be used.

Rationale

A called function may provide essential information about its process status and result
through return statement. Calling a function without using the return value should be a
warning that incorrect assumptions about the process were made.

Overloaded operators are excluded, as they should behave in the same way as built-in
operators.

20 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Exception

The return value of a function call may be discarded by use of a static_cast<void> cast,
so intentions of a programmer are explicitly stated.

Example

1 // $Id: A0-1-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <algorithm>

3 #include <cstdint>

4 #include <vector>

5 std::uint8_t fn1() noexcept

6 {

7 return 0U;

8 }

9 void fn2() noexcept

10 {

11 std::uint8_t x = fn1(); // Compliant

12 fn1(); // Non-compliant

13 static_cast<void>(fn1()); // Compliant by exception

14 }

15 void fn3()

16 {

17 std::vector<std::int8_t> v{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5};

18 std::unique(v.begin(), v.end()); // Non-compliant

19 v.erase(std::unique(v.begin(), v.end()), v.end()); // Compliant

20 }

See also

• MISRA C++ 2008 [6]: Rule 0-1-7 The value returned by a function having a non-
void return type that is not an overloaded operator shall always be used.

• HIC++ v4.0 [8]: 17.5.1 Do not ignore the result of std::remove, std::remove_if or
std::unique.

Rule M0-1-8 (required, implementation, automated)
All functions with void return type shall have external side effect(s).

See MISRA C++ 2008 [6]

Rule M0-1-9 (required, implementation, automated)
There shall be no dead code.

See MISRA C++ 2008 [6]

Rule M0-1-10 (advisory, implementation, automated)
Every defined function should be called at least once.

See MISRA C++ 2008 [6]

21 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/17-5-algorithms-library/
http://www.codingstandard.com/section/17-5-algorithms-library/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Note: This rule enforces developers to statically and explicitly use every function in
the source code. A function does not necessarily need to be called at run-time. Rule
M0-1-1 detects all unreachable code occurrences.

Rule A0-1-3 (required, implementation, automated)
Every static function or private method of a class shall be used.

Rationale

Static functions or private class’s methods that are not used may be symptomatic of a
serious problems, such as poor software design or missing paths in flow control.

This rule applies to all defined static and non-static methods declared in class’s private
section and all defined static functions.

This rule enforces developers to statically and explicitly use every static function or
private method of a class in the source code. A function does not necessarily need to
be called at run-time. Rule M0-1-1 detects all unreachable code occurrences.

Note that the statement applies to private struct’s methods as well.

Example

1 //% $Id: A0-1-3.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 static void f1() // Compliant

4 {

5 }

6 static void f2() // Non-compliant, defined static function never used

7 {

8 }

9 class C

10 {

11 public:

12 C() : x(0) {}

13 void m1(std::int32_t i) // Compliant, method m1 is used

14 {

15 x = i;

16 }

17 void m2(std::int32_t i,

18 std::int32_t j) // Compliant, never used but declared

19 // as public

20 {

21 x = (i > j) ? i : j;

22 }

23

24 protected:

25 void m1ProtectedImpl(std::int32_t j) // Compliant, never used but declared

26 // as protected

27 {

28 x = j;

29 }

22 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

30

31 private:

32 std::int32_t x;

33 void m1PrivateImpl(

34 std::int32_t j) // Non-compliant, private method never used

35 {

36 x = j;

37 }

38 };

39 int main(int, char**)

40 {

41 f1();

42 C c;

43 c.m1(1);

44 return 0;

45 }

See also

• MISRA C++ 2008 [6]: Rule 0-1-10 required Every defined function shall be called
at least once.

• HIC++ v4.0 [8]: 1.2.2 Ensure that no expression or sub-expression is redundant.

Rule M0-1-11 (required, implementation, automated)
There shall be no unused parameters (named or unnamed) in non-virtual
functions.

See MISRA C++ 2008 [6]

Rule M0-1-12 (required, implementation, automated)
There shall be no unused parameters (named or unnamed) in the set of
parameters for a virtual function and all the functions that override it.

See MISRA C++ 2008 [6]

6.0.2 Storage

Rule M0-2-1 (required, implementation, automated)
An object shall not be assigned to an overlapping object.

See MISRA C++ 2008 [6]

6.0.3 Runtime failures

23 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M0-3-1 (required, implementation/verification, non-automated)
Minimization of run-time failures shall be ensured by the use of at
least one of: (a) static analysis tools/techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding of checks to handle run-time faults.

See MISRA C++ 2008 [6]

Rule M0-3-2 (required, implementation, non-automated)
If a function generates error information, then that error information shall be
tested.

See MISRA C++ 2008 [6]

Note: Rule M0-3-2 does not cover exceptions due to different behavior. Exception
handling is described in chapter 6.15.

6.0.4 Arithmetic

Rule M0-4-1 (required, implementation, non-automated)
Use of scaled-integer or fixed-point arithmetic shall be documented.

See MISRA C++ 2008 [6]

Rule M0-4-2 (required, implementation, non-automated)
Use of floating-point arithmetic shall be documented.

See MISRA C++ 2008 [6]

Rule A0-4-1 (required, infrastructure/toolchain, non-automated)
Floating-point implementation shall comply with IEEE 754 standard.

Rationale

Floating-point arithmetic has a range of problems associated with it. Some of these can
be overcome by using an implementation that conforms to IEEE 754 (IEEE Standard
for Floating-Point Arithmetic).

Note that the rule implies that toolchain, hardware, C++ Standard Library and C++
built-in types (i.e. float, double) will provide full compliance to IEEE 754 standard in
order to use floating-points in the project.

Also, see: A0-4-2.

Example

24 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 //% $Id: A0-4-1.cpp 271389 2017-03-21 14:41:05Z piotr.tanski $

2 #include <limits>

3 static_assert(

4 std::numeric_limits<float>::is_iec559,

5 "Type float does not comply with IEEE 754 single precision format");

6 static_assert(

7 std::numeric_limits<float>::digits == 24,

8 "Type float does not comply with IEEE 754 single precision format");

9

10 static_assert(

11 std::numeric_limits<double>::is_iec559,

12 "type double does not comply with IEEE 754 double precision format");

13 static_assert(

14 std::numeric_limits<double>::digits == 53,

15 "Type double does not comply with IEEE 754 double precision format");

See also

• MISRA C++ 2008 [6]: Rule 0-4-3 Floating-point implementations shall comply
with a defined floating-point standard.

• JSF December 2005 [7]: AV Rule 146 Floating point implementations shall
comply with a defined floating point standard.

Rule A0-4-2 (required, implementation, automated)
Type long double shall not be used.

Rationale

The width of long double type, and therefore width of the significand, is implementation-
defined.

The width of long double type can be either:

• 64 bits, as the C++14 Language Standard allows long double to provide at least
as much precision as type double does, or

• 80 bits, as the IEEE 754 standard allows extended precision formats (see:
Extended-Precision-Format), or

• 128 bits, as the IEEE 754 standard defines quadruple precision format

Example
1 //% $Id: A0-4-2.cpp 270021 2017-03-09 15:30:37Z piotr.tanski $

2 void fn() noexcept

3 {

4 float f1{0.1F}; // Compliant

5 double f2{0.1}; // Compliant

6 long double f3{0.1L}; // Non-compliant

7 }

See also

25 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• none

Rule A0-4-3 (required, toolchain, automated)
The implementations in the chosen compiler shall strictly comply with the
C++14 Language Standard.

Rationale

It is important to determine whether implementations provided by the chosen compiler
strictly follow the ISO/IEC 14882:2014 C++ Language Standard.

Example

Since ISO/IEC 14882:2014 C++ Language Standard the integer division and modulo
operator results are no longer implementation-defined. “If both operands are
nonnegative then the remainder is nonnegative; if not, the sign of the remainder
is implementation-defined.” from ISO/IEC 14882:2003 is no longer present in the
standard since ISO/IEC 14882:2011. Note that this rule also covers modulo operator
as it is defined in terms of integer division.

Deducing a type of an auto variable initialized using ={} with a single element can
be implemented in non-standard way on some compilers. The deduced type of such
initialization should be of the variable type according to C++14 Language Standard,
while C++17 Language Standard defines that it should be of an std::initializer_list.

Other features provided by the chosen compiler also should follow the ISO/IEC
14882:2014 C++ Language Standard.

See also

• MISRA C++ 2008 [6]: Rule 1-0-3 The implementation of integer division in the
chosen compiler shall be determined and documented.

6.1 General

6.1.1 Scope

Rule A1-1-1 (required, implementation, automated)
All code shall conform to ISO/IEC 14882:2014 - Programming Language C++
and shall not use deprecated features.

Rationale

The current version of the C++ language is as defined by the ISO International
Standard ISO/IEC 14822:2014(E) "Information technology - Programming languages -
C++".

The C++14 is the improved version of the C++11. It is also “the state of the art” of C++
development that is required by ISO 26262 standard [5].

26 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Any reference in this document to “C++ Language Standard” refers to the ISO/IEC
14822:2014 standard.

Note that all of the deprecated features of C++ Language Standard are defined in
ISO/IEC 14882:2014 - Programming Language C++ Annexes C “Compatibility” and D
“Compatibility features”.

Example

1 //% $Id: A1-1-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 void f(std::int32_t i)

5 {

6 std::int32_t* a = nullptr;

7

8 // __try // Non-compliant - __try is a part of Visual Studio extension

9 try // Compliant - try keyword is a part of C++ Language Standard

10 {

11 a = new std::int32_t[i];

12 // ...

13 }

14

15 // __finally // Non-compliant - __finally is a part of Visual Studio

16 // extension

17 catch (

18 std::exception&) // Compliant - C++ Language Standard does not define

19 // finally block, only try and catch blocks

20 {

21 delete[] a;

22 a = nullptr;

23 }

24 }

See also

• MISRA C++ 2008 [6]: 1-0-1 All code shall conform to ISO/IEC 14882:2003 “The
C++ Standard Incorporating Technical Corrigendum 1”

• JSF December 2005 [7]: 4.4.1 All code shall conform to ISO/IEC 14882:2002(E)
standard C++.

• HIC++ v4.0 [8]: 1.1.1 Ensure that code complies with the 2011 ISO C++
Language Standard.

• HIC++ v4.0 [8]: 1.3.4 Do not use deprecated STL library features.

Rule M1-0-2 (required, implementation, non-automated)
Multiple compilers shall only be used if they have a common, defined
interface.

See MISRA C++ 2008 [6]

27 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/1-1-implementation-compliance/
http://www.codingstandard.com/section/1-1-implementation-compliance/
http://www.codingstandard.com/rule/1-3-4-do-not-use-deprecated-stl-library-features/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A1-1-2 (required, toolchain, non-automated)
A warning level of the compilation process shall be set in compliance with
project policies.

Rationale

If compiler enables the high warning level, then it is able to generate useful warning
messages that point out potential run-time problems during compilation time. The
information can be used to resolve certain errors before they occur at run-time.

Note that it is common practice to turn warnings into errors.

Also, note that enabling the highest compiler warning level may produce numerous
useless messages during compile time. It is important that the valid warning level for
the specific compiler is established in the project.

See also

• JSF December 2005 [7]: AV Rule 218 Compiler warning levels will be set in
compliance with project policies.

Rule A1-1-3 (required, implementation, automated)
An optimization option that disregards strict standard compliance shall not
be turned on in the chosen compiler.

Rationale

Enabling optimizations that disregard compliance with the C++ Language Standard
may create an output program that should strictly comply to the standard no longer
valid.

See also

• none

6.1.2 Normative references

Rule A1-2-1 (required, implementation, non-automated)
When using a compiler toolchain (including preprocessor, compiler itself,
linker, C++ standard libraries) in safety-related software, the tool confidence
level (TCL) shall be determined. In case of TCL2 or TCL3, the compiler shall
undergo a “Qualification of a software tool”, as per ISO 26262-8.11.4.6 [5].

Rationale

Vulnerabilities and errors in the compiler toolchain impact the binary that is built.

28 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Example

The following mechanisms could help to increase the Tool error Detection (TD) and
thus allowing to reduce the Tool Confidence Level:

1. Achievement of MC/DC code coverage on generated project assembly code

2. Diverse implementation of safety requirements at software or even at system level
(e.g. two micro-controllers)

3. Usage of diverse compilers or compilation options

4. Diversity at the level of operating system

5. Extensive testing (e.g. equivalence class testing, boundary value testing), testing
at several levels (e.g. unit testing, integration testing)

Note that in most automotive applications, the compiler is evaluated TCL3 or TCL2. In
case of TCL2 or TCL3, the following are typically performed (by compiler vendor or by
a project), see table 4 in ISO 26262-8:

1. Evaluation of the tool development process

2. Validation of the software tool, by performing automatic compiler tests that are
derived from the C++ language specification

See also

• ISO 26262-8 [5]: 11 Confidence in the use of software tools.

6.1.4 Implementation compliance

Rule A1-4-1 (required, implementation, non-automated)
Code metrics and their valid boundaries shall be defined.

Rationale

Code metrics that concern i.a. project’s structure, function’s complexity and size of a
source code shall be defined at the project level. It is also important to determine valid
boundaries for each metric to define objectives of the measurement.

See also

• HIC++ v4.0 [8]: 8.3.1 Do not write functions with an excessive McCabe
Cyclomatic Complexity.

• HIC++ v4.0 [8]: 8.3.2 Do not write functions with a high static program path count.

• HIC++ v4.0 [8]: 8.2.2 Do not declare functions with an excessive number of
parameters.

29 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/8-3-1-do-not-write-functions-with-an-excessive-mccabe-cyclomatic-complexity/
http://www.codingstandard.com/rule/8-3-1-do-not-write-functions-with-an-excessive-mccabe-cyclomatic-complexity/
http://www.codingstandard.com/rule/8-3-2-do-not-write-functions-with-a-high-static-program-path-count/
http://www.codingstandard.com/rule/8-2-2-do-not-declare-functions-with-an-excessive-number-of-parameters/
http://www.codingstandard.com/rule/8-2-2-do-not-declare-functions-with-an-excessive-number-of-parameters/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A1-4-2 (required, implementation, non-automated)
All code shall comply with defined boundaries of code metrics.

Rationale

Source code metrics needs to be measured for the project and comply with defined
boundaries. This gives valuable information whether the source code is complex,
maintainable and efficient.

See also

• none

6.2 Lexical conventions

6.2.3 Character sets

Rule A2-2-1 (required, implementation, automated)
Only those characters specified in the C++ Language Standard basic source
character set shall be used in the source code.

Rationale

“The basic source character set consists of 96 characters: the space character, the
control characters representing horizontal tab, vertical tab, form feed, and new-line,
plus the following 91 graphical characters: a b c d e f g h i j k l m n o p q r s t u v w x y
z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _ { } [] # (
) < > % : ; . ? * + - / ^ & | ~ ! =, \ " ’

” [C++ Language Standard [3]]

Exception

It is permitted to use other characters inside the text of a wide string.

Example

1 // $Id: A2-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn() noexcept

4 {

5 std::int32_t sum = 0; // Compliant

6 // std::int32_t Â£_value = 10; // Non-compliant

7 // sum += Â£_value; // Non-compliant

8 // Variable sum stores Â£ pounds // Non-compliant

9 }

See also

30 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• JSF December 2005 [7]: AV Rule 9: Only those characters specified in the C++
basic source character set will be used.

6.2.5 Trigraph sequences

Rule A2-5-1 (required, implementation, automated)
Trigraphs shall not be used.

Rationale

Trigraphs are denoted to be a sequence of 2 question marks followed by a specified
third character (e.g. ??’ represents a ~character. They can cause accidental confusion
with other uses of two question marks.

The Trigraphs are: ??=, ??/, ??’, ??(, ??), ??!, ??<, ??>, ??-.

Example
1 //% $Id: A2-5-1.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <iostream>

3 void fn1()

4 {

5 std::cout << "Enter date ??/??/??"; // Non-compliant, ??/??/?? becomes \\??

6 // after trigraph translation

7 }

8 void fn2()

9 {

10 std::cout << "Enter date dd/mm/yy"; // Compliant

11 }

See also

• MISRA C++2008: Rule 2-3-1 (Required) Trigraphs shall not be used.

• JSF December 2005 [7]: AV Rule 11 Trigraphs will not be used.

• HIC++ v4.0 [8]: 2.2.1 Do not use digraphs or trigraphs.

6.2.6 Alternative tokens

Rule A2-6-1 (required, implementation, automated)
Digraphs shall not be used.

Rationale

The digraphs are: <%, %>, <:, :>, %:, %:%:.

The use of digraphs may not meet developer expectations.

Example

31 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 //% $Id: A2-6-1.cpp 266557 2017-02-07 13:08:19Z piotr.tanski $

2 class A

3 {

4 public:

5 void f2() {}

6 };

7 // void fn1(A* a<:10:>) // Non-compliant

8 // <%

9 // a<:0:>->f2();

10 // %>

11 void fn2(A* a[10]) // Compliant, equivalent to the above

12 {

13 a[0]->f2();

14 }

See also

• MISRA C++ 2008 [6]: advisory 2-5-1 Digraphs should not be used.

• JSF December 2005 [7]: 4.4.1 AV Rule 12 The following digraphs will not be
used.

• HIC++ v4.0 [8]: 2.2.1 Do not use digraphs or trigraphs.

6.2.8 Comments

Rule A2-8-1 (required, implementation, automated)
The character \ shall not occur as a last character of a C++ comment.

Rationale

If the last character in a single-line C++ comment is \, then the comment will continue
in the next line. This may lead to sections of code that are unexpectedly commented
out.

Example

1 // $Id: A2-8-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn() noexcept

4 {

5 std::int8_t idx = 0;

6 // Incrementing idx before the loop starts // Requirement X.X.X \\

7 ++idx; // Non-compliant - ++idx was unexpectedly commented-out because of \

character occurrence in the end of C++ comment

8

9 constexpr std::int8_t limit = 10;

10 for (; idx <= limit; ++idx)

11 {

12 // ...

13 }

32 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

14 }

See also

• none

Rule A2-8-2 (required, implementation, non-automated)
Sections of code shall not be “commented out”.

Rationale

Comments, using both C-style and C++ comments, should only be used to explain
aspect of the source code. Code that is commented-out may become out of date,
which may lead to confusion while maintaining the code.

Additionally, C-style comment markers do not support nesting, and for this purpose
commenting out code is dangerous, see: A2-8-4.

Note that the code that is a part of a comment (e.g. for clarification of the usage of
the function, for specifying function behavior) does not violate this rule. As it is not
possible to determine if a commented block is a textual comment, a code example or
a commented-out piece of code, this rule is not enforceable by static analysis tools.

Example

1 // $Id: A2-8-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn1() noexcept

4 {

5 std::int32_t i = 0;

6 // /*
7 // * ++i; /* incrementing the variable i */

8 // */ // Non-compliant - C-style comments nesting is not supported,

9 // compilation error

10 for (; i < 10; ++i)

11 {

12 // ...

13 }

14 }

15 void fn2() noexcept

16 {

17 std::int32_t i = 0;

18 // ++i; // Incrementing the variable i // Non-compliant - code should not

19 // be commented-out

20 for (; i < 10; ++i)

21 {

22 // ...

23 }

24 }

25 void fn3() noexcept

26 {

27 std::int32_t i = 0;

33 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

28 ++i; // Incrementing the variable i using ++i syntax // Compliant - code

29 // is not commented-out, but ++i occurs in a

30 // comment too

31 for (; i < 10; ++i)

32 {

33 // ...

34 }

35 }

See also

• MISRA C++ 2008 [6]: Rule 2-7-2 Sections of code shall not be “commented out”
using C-style comments.

• MISRA C++ 2008 [6]: Rule 2-7-3 Sections of code should not be “commented
out” using C++ comments.

Rule A2-8-3 (required, implementation, automated)
All declarations of “user-defined” types, static and non-static data members,
functions and methods shall be preceded by documentation using “///”
comments and “@tag” tags.

Rationale

Every declaration needs to provide a proper documentation.

This is compatible with the C++ standard library documentation. This forces
a programmer to provide a clarification for defined types and its data members
responsibilities, methods and functions usage, their inputs and outputs specification
(e.g. memory management, ownership, valid boundaries), and exceptions that could
be thrown.

Note that the documentation style is also supported by external tools, e.g. doxygen.

Example
1 //% $Id: A2-8-3.hpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3

4 void f1(std::int32_t) noexcept; // Non-compliant documentation

5

6 std::int32_t f2(std::int16_t input1,

7 std::int32_t input2); // Non-compliant documentation

8

9 /// @brief Function description

10 ///

11 /// @param input1 input1 parameter description

12 /// @param input2 input2 parameter description

13 /// @throw std::runtime_error conditions to runtime_error occur

14 ///

15 /// @return return value description

16 std::int32_t f3(

34 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

17 std::int16_t input1,

18 std::int16_t input2) noexcept(false); // Compliant documentation

19

20 /// @brief Class responsibility

21 class C // Compliant documentation

22 {

23 public:

24 /// @brief Constructor description

25 ///

26 /// @param input1 input1 parameter description

27 /// @param input2 input2 parameter description

28 C(std::int32_t input1, float input2) : x(input1), y(input2) {}

29

30 /// @brief Method description

31 ///

32 /// @return return value descrption

33 std::int const* getX() const noexcept { return &x; }

34

35 private:

36 /// @brief Data member descpription

37 std::int32_t x;

38 /// @brief Data member descpription

39 float y;

40 };

See also

• none

Rule A2-8-4 (required, implementation, automated)
C-style comments shall not be used.

Rationale

C-style comment delimiters /* ... */are not supposed to be used as they make the
source code less readable and introduce errors when nesting a C-style comment in
the C-style comment.

Example

1 // $Id: A2-8-4.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn(bool b1, bool b2) noexcept

4 {

5 // Introduces x of type std::int16_t // Compliant

6 std::int32_t x = 0;

7 // std::int16_t x = 0; // commented out temporarily, type too small //

8 // Compliant

9 if (b1)

10 {

11 if (b2)

12 {

35 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

13 /*
14 * Do something special here // Non-compliant

15 */

16 }

17 }

18

19 // /* disable this code temporarily

20 // if (b1)

21 // {

22 // /* TODO: should we do something? */ // Non-compliant - compilation

23 // error

24 // }

25 // */

26 }

See also

• MISRA C++ 2008 [6]: 2-7-1 The character sequence /* shall not be used within a
C-style comment.

• HIC++ v4.0 [8]: 2.3.1 Do not use the C comment delimiters /* ... */.

6.2.9 Header names

Rule A2-9-1 (required, implementation, automated)
A header file name shall be identical to a type name declared in it if it declares
a type.

Rationale

Naming a header file with a name of a type (e.g. a struct, a class, etc.) declared in it
makes include-directives and project view more readable.

See also

• none

6.2.11 Identifiers

Rule M2-10-1 (required, implementation, automated)
Different identifiers shall be typographically unambiguous.

See MISRA C++ 2008 [6]

36 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/2-3-1-do-not-use-the-c-comment-delimiters/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A2-11-1 (required, implementation, automated)
An identifier declared in an inner scope shall not hide an identifier declared
in an outer scope.

Rationale

If an identifier is declared in an inner scope and it uses the same name as an identifier
that already exists in an outer scope, then the innermost declaration will “hide” the
outer one. This may lead to developer confusion. The terms outer and inner scope are
defined as follows:

• Identifiers that have file scope can be considered as having the outermost scope.

• Identifiers that have block scope have a more inner scope.

• Successive, nested blocks, introduce more inner scopes.

Note that declaring identifiers in different named namespaces, classes, structs or enum
classes will not hide other identifiers from outer scope, because they can be accessed
using fully-qualified id.

Exception

An identifier declared within a namespace using the same name as an identifier of the
containing namespace does not violate the rule.

An identifier declared locally inside a lambda expression and not referring to a name
of a captured variable does not violate the rule.

Example
1 //% $Id: A2-11-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 std::int32_t sum = 0;

4 namespace

5 {

6 std::int32_t sum; // Non-compliant, hides sum in outer scope

7 }

8 class C1

9 {

10 std::int32_t sum; // Compliant, does not hide sum in outer scope

11 };

12 namespace n1

13 {

14 std::int32_t sum; // Compliant, does not hide sum in outer scope

15 }

16 std::int32_t idx;

17 void f1(std::int32_t);

18 void f2()

19 {

20 std::int32_t max = 5;

21

22 for (std::int32_t idx = 0; idx < max;

37 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

23 ++idx) // Non-compliant, hides idx in outer scope

24 {

25 for (std::int32_t idx = 0; idx < max;

26 ++idx) // Non-compliant, hides idx in outer scope

27 {

28 }

29 }

30 }

31 void f3()

32 {

33 std::int32_t i = 0;

34 std::int32_t j = 0;

35 auto lambda = [i]() {

36 std::int32_t j =

37 10; // Compliant - j was not captured, so it does not hide

38 // j in outer scope

39 return i + j;

40 };

41 }

See also

• MISRA C++ 2008 [6]: required 2-10-2 Identifiers declared in an inner scope shall
not hide an identifier declared in an outer scope.

• JSF December 2005 [7]: 4.15 AV Rule 135 Identifiers in an inner scope shall not
use the same name as an identifier in an outer scope, and therefore hide that
identifier.

• HIC++ v4.0 [8]: 3.1.1 Do not hide declarations.

Rule M2-10-3 (required, implementation, automated)
A typedef name (including qualification, if any) shall be a unique identifier.

See MISRA C++ 2008 [6]

Rule A2-11-2 (required, implementation, automated)
A “using” name shall be a unique identifier within a namespace.

Rationale

Reusing a using name either as another using name or for any other purpose may
lead to developer confusion. The same using shall not be duplicated anywhere within
a namespace.

Example
1 //% $Id: A2-11-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 namespace n1

4 {

38 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 using func = void (*)(std::int32_t, std::int32_t);

6 void f1()

7 {

8 using func =

9 void (*)(void); // Non-compliant, reuses func identifier declared

10 // in the same namespace

11 }

12 }

13 namespace n2

14 {

15 using func = void (*)(std::int32_t,

16 std::int32_t); // Compliant, reuses func identifier but

17 // in another namespace

18 }

See also

• MISRA C++ 2008 [6]: Rule 2-10-3 (Required) A typedef name (including
qualification, if any) shall be a unique identifier.

• JSF December 2005 [7]: 4.15 AV Rule 135 Identifiers in an inner scope shall not
use the same name as an identifier in an outer scope, and therefore hide that
identifier.

• HIC++ v4.0 [8]: 2.4.1 Ensure that each identifier is distinct from any other visible
identifier

Rule A2-11-3 (required, implementation, automated)
A “user-defined” type name shall be a unique identifier within a namespace.

Rationale

Reusing a user-defined type name, either as another type or for any other purpose,
may lead to developer confusion. The user-defined type name shall not be duplicated
anywhere in the project, even if the declaration is identical. The term user-defined type
is defined as follows: - class - struct - union - enumeration - typedef / using

Example

1 //% $Id: A2-11-3.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 class Type

4 {

5 };

6 // struct Type { }; // Non-compliant, Type name reused

7 // enum class Type : std::int8_t { }; // Non-compliant, Type name reused

See also

• MISRA C++ 2008 [6]: required 2-10-4 A class, union or enum name (including
qualification, if any) shall be a unique identifier.

39 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• JSF December 2005 [7]: 4.15 AV Rule 135 Identifiers in an inner scope shall not
use the same name as an identifier in an outer scope, and therefore hide that
identifier.

• HIC++ v4.0 [8]: 2.4.1 Ensure that each identifier is distinct from any other visible
identifier

Rule A2-11-4 (required, implementation, automated)
The identifier name of a non-member object with static storage duration or
static function shall not be reused within a namespace.

Rationale

No identifier with static storage duration should be re-used in the same namespace
across any source files in the project.

This may lead to the developer or development tool confusing the identifier with another
one.

Example

1 //% $Id: A2-11-4.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 // f1.cpp

4 namespace ns1

5 {

6 static std::int32_t globalvariable = 0;

7 }

8

9 // f2.cpp

10 namespace ns1

11 {

12 // static std::int32_t globalvariable = 0; // Non-compliant - identifier reused

13 // in ns1 namespace in f1.cpp

14 }

15 namespace ns2

16 {

17 static std::int32_t globalvariable =

18 0; // Compliant - identifier reused, but in another namespace

19 }

20

21 // f3.cpp

22 static std::int32_t globalvariable =

23 0; // Compliant - identifier reused, but in another namespace

See also

• MISRA C++ 2008 [6]: advisory 2-10-5 The identifier name of a non-member
object or function with static storage duration should not be reused.

40 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A2-11-5 (advisory, implementation, automated)
An identifier name of a non-member object or function with static storage
duration should not be reused.

Rationale

Regardless of scope, no identifier with static storage duration should be re-used across
any source files in the project. This includes objects or functions with external linkage
and any objects or functions with static storage class specifier. While the compiler
can understand this, the possibility exists for the developer or development tool to
incorrectly associate unrelated variables with the same name.

Example
1 //% $Id: A2-11-5.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 // f1.cpp

4 namespace n_s1

5 {

6 static std::int32_t globalvariable = 0;

7 }

8 static std::int32_t filevariable = 5; // Compliant - identifier not reused

9 static void globalfunction();

10

11 // f2.cpp

12 namespace n_s1

13 {

14 // static std::int32_t globalvariable = 0; // Non-compliant - identifier reused

15 static std::int16_t modulevariable = 10; // Compliant - identifier not reused

16 }

17 namespace n_s2

18 {

19 static std::int16_t modulevariable2 = 20;

20 }

21 static void globalfunction(); // Non-compliant - identifier reused

22 static std::int16_t modulevariable2 = 15; // Non-compliant - identifier reused

See also

• MISRA C++ 2008 [6]: advisory 2-10-5 The identifier name of a non-member
object or function with static storage duration should not be reused.

Rule M2-10-6 (required, implementation, automated)
If an identifier refers to a type, it shall not also refer to an object or a function
in the same scope.

See MISRA C++ 2008 [6]

6.2.14 Literals

41 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A2-14-1 (required, implementation, automated)
Only those escape sequences that are defined in ISO/IEC 14882:2014 shall
be used.

Rationale

The use of an undefined escape sequence leads to undefined behavior. The defined
escape sequences (ISO/IEC 14882:2014) are: \’, \", \?, \\, \a, \b, \f, \n, \r, \t, \v, \<Octal
Number>, \x<Hexadecimal Number>, \U<Unicode Character Name>

Example
1 //% $Id: A2-14-1.cpp 266557 2017-02-07 13:08:19Z piotr.tanski $

2 #include <string>

3 void f()

4 {

5 const std::string a = "\k"; // Non-compliant

6 const std::string b = "\n"; // Compliant

7 const std::string c = "\U0001f34c"; // Compliant

8 }

See also

• MISRA C++ 2008 [6]: required 2-13-1 Only those escape sequences that are
defined in ISO/IEC14882:2003 shall be used.

Rule M2-13-2 (required, implementation, automated)
Octal constants (other than zero) and octal escape sequences (other than
“\0”) shall not be used.

See MISRA C++ 2008 [6]

Rule M2-13-3 (required, implementation, automated)
A “U” suffix shall be applied to all octal or hexadecimal integer literals of
unsigned type.

See MISRA C++ 2008 [6]

Rule M2-13-4 (required, implementation, automated)
Literal suffixes shall be upper case.

See MISRA C++ 2008 [6]

Rule A2-14-2 (required, implementation, automated)
String literals with different encoding prefixes shall not be concatenated.

Rationale

Concatenation of wide and narrow string literals leads to undefined behavior.

42 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

“In translation phase 6 (2.2), adjacent string-literals are concatenated. If both string-
literals have the same encoding-prefix, the resulting concatenated string literal has
that encoding-prefix. If one string-literal has no encoding-prefix, it is treated as a
string-literal of the same encoding-prefix as the other operand. If a UTF-8 string
literal token is adjacent to a wide string literal token, the program is ill-formed.
Any other concatenations are conditionally-supported with implementation-defined
behavior. [Note: This concatenation is an interpretation, not a conversion. Because
the interpretation happens in translation phase 6 (after each character from a literal has
been translated into a value from the appropriate character set), a string-literal’s initial
rawness has no effect on the interpretation or well-formedness of the concatenation.
-end note]” [C++14 Language Standard] [3]

Example

1 //% $Id: A2-14-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2

3 char16_t nArray[] =

4 u"Hello"

5 u"World"; // Compliant, "u" stands for char16_t type

6

7 char32_t nArray2[] =

8 U"Hello"

9 U"World"; // Compliant, "U" stands for char32_t type

10

11 wchar_t wArray[] =

12 L"Hello"

13 L"World"; // Compliant, "L" stands for wchar_t type - violates A2-14-3

14 // rule.

15

16 wchar_t mixed1[] =

17 "Hello"

18 L"World"; // Compliant

19

20 char32_t mixed2[] =

21 "Hello"

22 U"World"; // Compliant

23

24 char16_t mixed3[] =

25 "Hello"

26 u"World"; // Compliant

27

28 // wchar_t mixed1[] = u"Hello" L"World"; // Non-compliant - compilation error

29

30 // char32_t mixed2[] = u"Hello" U"World"; // Non-compliant - compilation error

See also

• MISRA C++ 2008 [6]: required 2-13-5 Narrow and wide string literals shall not be
concatenated.

• HIC++ v4.0 [8]: 2.5.1 Do not concatenate strings with different encoding prefixes

43 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A2-14-3 (required, implementation, automated)
Type wchar_t shall not be used.

Rationale

Width of wchar_t type is implementation-defined.

Types char16_t and char32_t should be used instead.

Example
1 //% $Id: A2-14-3.cpp 266557 2017-02-07 13:08:19Z piotr.tanski $

2 char16_t string1[] = u"ABC"; // Compliant

3 char32_t string2[] = U"DEF"; // Compliant

4 wchar_t string3[] = L"GHI"; // Non-compliant

See also

• none

6.3 Basic concepts

6.3.1 Declarations and definitions

Rule A3-1-1 (required, implementation, automated)
It shall be possible to include any header file in multiple translation units
without violating the One Definition Rule.

Rationale

A header file is a file that holds declarations used in more than one translation unit
and acts as an interface between separately compiled parts of a program. A header
file often contains classes, object declarations, enums, functions, inline functions,
templates, typedefs, type aliases and macros.

In particular, a header file is not supposed to contain or produce definitions of global
objects or functions that occupy storage, especially objects that are not declared
“extern” or definitions of functions that are not declared “inline”.

Example
1 //% $Id: A3-1-1.hpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 void f1(); // Compliant

4 extern void f2(); // Compliant

5 void f3()

6 {

7 } // Non-compliant

8 static inline void f4()

9 {

44 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

10 } // Compliant

11 template <typename T>

12 void f5(T)

13 {

14 } // Compliant

15 std::int32_t a; // Non-compliant

16 extern std::int32_t b; // Compliant

17 constexpr static std::int32_t c = 10; // Compliant

18 namespace ns

19 {

20 constexpr static std::int32_t d = 100; // Compliant

21 const static std::int32_t e = 50; // Compliant

22 static std::int32_t f; // Non-compliant

23 static void f6() noexcept; // Non-compliant

24 }

See also

• MISRA C++ 2008 [6]: Rule 3-1-1 It shall be possible to include any header file in
multiple translation units without violating the One Definition Rule.

Rule A3-1-2 (required, implementation, automated)
Header files, that are defined locally in the project, shall have a file name
extension of one of: ".h", ".hpp" or ".hxx".

Rationale

This is consistent with developer expectations to provide header files with one of the
standard file name extensions.

Example

1 //% $Id: A3-1-2.cpp 266557 2017-02-07 13:08:19Z piotr.tanski $

2 //#include <h3.h> // Compliant

3 //#include <h1.hpp> // Compliant

4 //#include <h2.hxx> // Compliant

5 //#include <h4.cpp> // Non-compliant

6 //#include <h5.c> // Non-compliant

7 //#include <h6.hdr> // Non-compliant

8 //#include <h7.inc> // Non-compliant

See also

• JSF December 2005 [7]: 4.9.2 AV Rule 53 Header files will always have a file
name extension of ".h".

Rule A3-1-3 (advisory, implementation, automated)
Implementation files, that are defined locally in the project, should have a file
name extension of ".cpp".

45 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

This is consistent with developer expectations to provide C++ implementation files with
the standard file name extension.

Note that compilers support various file name extensions for C++ implementation files.

See also

• JSF December 2005 [7]: 4.9.2 AV Rule 54 Implementation files will always have
a file name extension of ".cpp".

Rule M3-1-2 (required, implementation, automated)
Functions shall not be declared at block scope.

See MISRA C++ 2008 [6]

Rule A3-1-4 (required, implementation, automated)
When an array with external linkage is declared, its size shall be stated
explicitly.

Rationale

Although it is possible to declare an array of incomplete type and access its elements,
it is safer to do so when the size of the array can be explicitly determined.

Example
1 //% $Id: A3-1-4.hpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 extern std::int32_t array1[]; // Non-compliant

4 extern std::int32_t array2[42]; // Compliant

See also

• MISRA C++ 2008 [6]: Rule 3-1-3 When an array is declared, its size shall either
be stated explicitly or defined implicitly by initialization.

6.3.2 One Definition Rule

Rule M3-2-1 (required, implementation, automated)
All declarations of an object or function shall have compatible types.

See MISRA C++ 2008 [6]

Rule M3-2-2 (required, implementation, automated)
The One Definition Rule shall not be violated.

See MISRA C++ 2008 [6]

46 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M3-2-3 (required, implementation, automated)
A type, object or function that is used in multiple translation units shall be
declared in one and only one file.

See MISRA C++ 2008 [6]

Rule M3-2-4 (required, implementation, automated)
An identifier with external linkage shall have exactly one definition.

See MISRA C++ 2008 [6]

6.3.3 Scope

Rule A3-3-1 (required, implementation, automated)
Objects or functions with external linkage (including members of named
namespaces) shall be declared in a header file.

Rationale

Placing the declarations of objects and functions with external linkage in a header file
means that they are intended to be accessible from other translation units.

If external linkage is not needed, then the object or function is supposed to be either
declared in an unnamed namespace or declared static in the implementation file.
This reduces the visibility of objects and functions, which allows to reach a higher
encapsulation and isolation.

Note that members of named namespace are by default external linkage objects.

Exception

This rule does not apply to main, or to members of unnamed namespaces.

Example
1 //% $Id: A3-3-1.hpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 extern std::int32_t a1;

4 extern void f4();

5 namespace n

6 {

7 void f2();

8 std::int32_t a5; // Compliant, external linkage

9 }

1 //% $Id: A3-3-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include "A3-3-1.hpp"

3 std::int32_t a1 = 0; // Compliant, external linkage

4 std::int32_t a2 = 0; // Non-compliant, static keyword not used

47 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 static std::int32_t a3 = 0; // Compliant, internal linkage

6 namespace

7 {

8 std::int32_t a4 = 0; // Compliant by exception

9 void f1() // Compliant by exception

10 {

11 }

12 }

13 namespace n

14 {

15 void f2() // Compliant, external linkage

16 {

17 }

18 std::int32_t a6 = 0; // Non-compliant, external linkage

19 }

20 extern std::int32_t a7; // Non-compliant, extern object declared in .cpp file

21 static void f3() // Compliant, static keyword used

22 {

23 }

24 void f4() // Compliant, external linkage

25 {

26 a1 = 1;

27 a2 = 1;

28 a3 = 1;

29 a4 = 1;

30 n::a5 = 1;

31 n::a6 = 1;

32 a7 = 1;

33 }

34 void f5() // Non-compliant, static keyword not used

35 {

36 a1 = 2;

37 a2 = 2;

38 a3 = 2;

39 a4 = 2;

40 n::a5 = 2;

41 n::a6 = 2;

42 a7 = 2;

43 }

44 int main(int, char**) // Compliant by exception

45 {

46 f1();

47 n::f2();

48 f3();

49 f4();

50 f5();

51 }

See also

• MISRA C++ 2008 [6]: Rule 3-3-1 Objects or functions with external linkage shall
be declared in a header file.

48 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A3-3-2 (required, implementation, automated)
Non-POD type objects with static storage duration shall not be used.

Rationale

Using global and static variables of a non-POD type makes the API of a class to be
spurious about its true dependencies, as they can be accessed from any place of the
source code. Using static or global variables makes the code more difficult to maintain,
less readable and significantly less testable.

Another problem is that the order in which constructors and initializers for static
variables are called is only partially specified in the C++ Language Standard and can
even change from build to build. This can cause issues that are difficult to find or debug.

Note that the rule applies to:

• global variables (i.e. extern)

• static variables

• static class member variables

• static function-scope variables

Exception

Defining “static constexpr” variables of non-POD type is permitted.

Example

1 // $Id: A3-3-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <limits>

4 #include <string>

5 class A // Non-POD type

6 {

7 public:

8 static std::uint8_t instanceId; // Compliant - static variable of POD type

9 static float const pi; // Compliant - static variable of POD type

10 static std::string const

11 separator; // Non-compliant - static variable of nonPOD type

12

13 // Implementation

14 };

15 std::uint8_t A::instanceId = 0;

16 float const A::pi = 3.14159265359;

17 std::string const A::separator = "==========";

18

19 class B

20 {

21 public:

22 // Implementation

23

49 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 private:

25 static A a; // Non-compliant - static variable of non-POD type

26 };

27

28 class C

29 {

30 public:

31 constexpr C() = default;

32 };

33

34 namespace

35 {

36 constexpr std::int32_t maxInt32 =

37 std::numeric_limits<std::int32_t>::max(); // Compliant - static constexpr

38 // variable of POD type

39

40 A instance{}; // Non-compliant - static variable of non-POD type

41

42 constexpr C

43 c{}; // Compliant by exception - constexpr static variable of non-POD type

44 } // namespace

45

46 void fn() noexcept

47 {

48 static A a{}; // Non-compliant

49 static std::int32_t counter{0}; // Compliant

50 }

51

52 class D // Singleton

53 {

54 public:

55 D() = default;

56 D(D const&) = default;

57 D(D&&) = default;

58 D& operator=(D const&) = default;

59 D& operator=(D&&) = default;

60 ~D() = default;

61

62 private:

63 static B* instance; // Compliant - static variable of non-POD type, because

64 // it is a raw pointer

65 };

66 B* D::instance = nullptr;

See also

• HIC++ v4.0 [8]: 3.3.1 Do not use variables with static storage duration.

• Google C++ Style Guide [11]: Static and Global Variables.

50 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/3-3-storage-duration/
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M3-3-2 (required, implementation, automated)
If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

See MISRA C++ 2008 [6]

Note: Static storage duration class specifier is redundant and does not need to be
specified if a function is placed in an unnamed namespace.

6.3.4 Name lookup

Rule M3-4-1 (required, implementation, automated)
An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

See MISRA C++ 2008 [6]

6.3.9 Types

Rule M3-9-1 (required, implementation, automated)
The types used for an object, a function return type, or a function parameter
shall be token-for-token identical in all declarations and re-declarations.

See MISRA C++ 2008 [6]

Rule A3-9-1 (required, implementation, automated)
Fixed width integer types from <cstdint>, indicating the size and signedness,
shall be used in place of the basic numerical types.

Rationale

The basic numerical types of char, int, short, long are not supposed to be used,
specific-length types from <cstdint> header need be used instead.

Fixed width integer types are:

• std::int8_t

• std::int16_t

• std::int32_t

• std::int64_t

• std::uint8_t

• std::uint16_t

51 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• std::uint32_t

• std::uint64_t

Exception

The wchar_t does not need a typedef as it always maps to a type that supports wide
characters.

Example
1 //% $Id: A3-9-1.cpp 271389 2017-03-21 14:41:05Z piotr.tanski $

2 #include <cstdint>

3 void f()

4 {

5 std::int32_t i1 = 5; // Compliant

6 int i2 = 10; // Non-compliant

7 std::int64_t i3 = 250; // Compliant

8 long int i4 = 50; // Non-compliant

9 std::int8_t i5 = 16; // Compliant

10 char i6 = 23; // Non-compliant

11 }

See also

• MISRA C++ 2008 [6]: Rule 3-9-2 typedefs that indicate size and signedness
should be used in place of the basic numerical types.

Rule M3-9-3 (required, implementation, automated)
The underlying bit representations of floating-point values shall not be used.

See MISRA C++ 2008 [6]

6.4 Standard conversions

6.4.5 Integral promotions

Rule M4-5-1 (required, implementation, automated)
Expressions with type bool shall not be used as operands to built-in
operators other than the assignment operator =, the logical operators &&,

||, !, the equality operators == and ! =, the unary & operator, and the
conditional operator.

See MISRA C++ 2008 [6]

Rule A4-5-1 (required, implementation, automated)
Expressions with type enum or enum class shall not be used as operands
to built-in and overloaded operators other than the subscript operator [],

52 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

the assignment operator =, the equality operators == and ! =, the unary &
operator, and the relational operators <, <=, >, >=.

Rationale

Enumerations, i.e. enums or enum classes, have implementation-defined
representations and they are not supposed to be used in arithmetic contexts.

Note that only enums can be implicitly used as operands to other built-in operators, like
operators +, −, ∗, etc. Enum class needs to provide definitions of mentioned operators
in order to be used as operand.

Exception

It is allowed to use the enumeration as operand to all built-in and overloaded operators
if the enumeration satisfies the “BitmaskType” concept [15].

Example
1 // $Id: A4-5-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 enum Colour : std::uint8_t

4 {

5 Red,

6 Green,

7 Blue,

8 ColoursCount

9 };

10 void f1() noexcept(false)

11 {

12 Colour colour = Red;

13 if (colour == Green) // Compliant

14 {

15 }

16

17 if (colour == (Red + Blue)) // Non-compliant

18 {

19 }

20

21 if (colour < ColoursCount) // Compliant

22 {

23 }

24 }

25 enum class Car : std::uint8_t

26 {

27 Model1,

28 Model2,

29 Model3,

30 ModelsCount

31 };

32 void f2() noexcept(false)

33 {

34 Car car = Car::Model1;

53 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://en.cppreference.com/w/cpp/concept/BitmaskType

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

35 if (car != Car::Model2) // Compliant

36 {

37 }

38

39 if (car == Car::Model3) // Compliant

40 {

41 }

42

43 // if (car == (Car::Model1 + Car::Model2)) // Non-compliant -

44 // operator+ not provided for Car enum class, compilation error

45 //{

46 //}

47 if (car < Car::ModelsCount) // Compliant

48 {

49 }

50 }

51 Car operator+(Car lhs, Car rhs)

52 {

53 return Car::Model3;

54 }

55 void f3() noexcept(false)

56 {

57 Car car = Car::Model3;

58 if (car == (Car::Model1 + Car::Model2)) // Non-compliant - overloaded

59 // operator+ provided, no

60 // compilation error

61 {

62 }

63 }

64 enum Team : std::uint8_t

65 {

66 TeamMember1 = 0,

67 TeamMember2 = 1,

68 TeamMember3 = 2,

69 TeamMember4 = 3,

70 TeamMembersStart = TeamMember1,

71 TeamMembersEnd = TeamMember2,

72 TeamMembersCount = 4

73 };

74 void f4(const char* teamMember)

75 {

76 // Implementation

77 }

78 void f5()

79 {

80 const char* team[TeamMembersCount]; // Compliant

81 // ...

82 f4(team[TeamMember2]); // Compliant

83 }

See also

54 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• MISRA C++ 2008 [6]: Rule 4-5-2 Expressions with type enum shall not be
used as operands to built-in operators other than the subscript operator [], the
assignment operator =, the equality operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=.

Rule M4-5-3 (required, implementation, automated)
Expressions with type (plain) char and wchar_t shall not be used as
operands to built-in operators other than the assignment operator =, the
equality operators == and ! =, and the unary & operator.

See MISRA C++ 2008 [6]

6.4.7 Integral conversion

Rule A4-7-1 (required, implementation, automated)
An integer expression shall not lead to data loss.

Rationale

Implicit conversions, casts and arithmetic expressions may lead to data loss, e.g.
overflows, underflows or wrap-around.

Integral expressions need to be performed on proper integral types that ensure that
the data loss will not occur or appropriate guards should be used to statically detect or
counteract such a data loss.

Example
1 // $Id: A4-7-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 std::int8_t fn1(std::int8_t x, std::int8_t y) noexcept

5 {

6 return (x + y); // Non-compliant - may lead to overflow

7 }

8 std::int8_t fn2(std::int8_t x, std::int8_t y)

9 {

10 if (x > 100 || y > 100) // Range check

11 {

12 throw std::logic_error("Preconditions check error");

13 }

14 return (x + y); // Compliant - ranges of x and y checked before the

15 // arithmetic operation

16 }

17 std::int16_t fn3(std::int8_t x, std::int8_t y) noexcept

18 {

19 return (static_cast<std::int16_t>(x) + y); // Compliant - std::int16_t type

20 // is enough for this arithmetic

21 // operation

55 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

22 }

23 std::uint8_t fn4(std::uint8_t x, std::uint8_t y) noexcept

24 {

25 return (x * y); // Non-compliant - may lead to wrap-around

26 }

27 std::int8_t fn5(std::int16_t x)

28 {

29 return static_cast<std::int8_t>(x); // Non-compliant - data loss

30 }

31 std::int8_t fn6(std::int16_t x)

32 {

33 return x; // Non-compliant - data loss by implicit conversion

34 }

35 void f()

36 {

37 std::int8_t x1 =

38 fn1(5, 10); // Compliant - overflow will not occur for these values

39 std::int8_t x2 = fn1(250, 250); // Non-compliant - Overflow occurs

40 try

41 {

42 std::int8_t x3 =

43 fn2(250, 250); // Compliant - No overflow, range checks

44 // inside fn2() function

45 }

46 catch (std::logic_error&)

47 {

48 // Handle an error

49 }

50 std::int16_t x4 = fn3(250, 250); // Compliant - No overflow, arithmetic

51 // operation underlying type is wider than

52 // std::int8_t

53 std::uint8_t x5 = fn4(50, 10); // Non-compliant - Wrap-around occurs

54 std::int8_t x6 = fn5(100); // Compliant - data loss will not occur

55 std::int8_t x7 = fn5(300); // Non-compliant - Data loss occurs

56 std::int8_t x8 = fn6(300); // Non-compliant - Data loss occurs

57

58 std::int8_t x9 = 150;

59 std::int16_t x10 = static_cast<std::int16_t>(x9 + x9); // Non-compliant

60 x10 = x9 + x9; // Non-compliant

61 x10 = static_cast<std::int16_t>(x9) + x9; // Compliant

62

63 std::int8_t x11 = x9 << 5; // Non-compliant

64

65 std::int8_t x12 = 127;

66 ++x12; // Non-compliant

67

68 std::uint8_t x13 = 255;

69 ++x13; // Non-compliant

70 }

See also

56 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• MISRA C++ 2008 [6]: Rule 5-0-6 An implicit integral or floating-point conversion
shall not reduce the size of the underlying type.

• MISRA C++ 2008 [6]: Rule 5-0-8 An explicit integral or floating-point conversion
shall not increase the size of the underlying type of a cvalue expression.

• HIC++ v4.0 [8]: 4.2.2 Ensure that data loss does not demonstrably occur in an
integral expression.

• C++ Core Guidelines [10]: ES.46: Avoid lossy (narrowing, truncating) arithmetic
conversions.

6.4.10 Pointer conversions

Rule M4-10-1 (required, implementation, automated)
NULL shall not be used as an integer value.

See MISRA C++ 2008 [6]

Rule A4-10-1 (required, implementation, automated)
Only nullptr literal shall be used as the null-pointer-constant.

Rationale

In C++, the literal NULL is both the null-pointer-constant and an integer type. To meet
developer expectations, only nullptr pointer literal shall be used as the null-pointer-
constant.

Note that, nullptr pointer literal allows parameters forwarding via a template function.

Example
1 //% $Id: A4-10-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstddef>

3 #include <cstdint>

4

5 void f1(std::int32_t);

6 void f2(std::int32_t*);

7 void f3()

8 {

9 f1(0); // Compliant

10 f1(NULL); // Non-compliant - NULL used as an integer,

11 // compilable

12 // f1(nullptr); // Non-compliant - nullptr used as an integer

13 // compilation error

14 f2(0); // Non-compliant - 0 used as the null posinter constant

15 f2(NULL); // Non-compliant - NULL used as the null pointer constant

16 f2(nullptr); // Compliant

17 }

18 void f4(std::int32_t*);

57 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/4-2-2-ensure-that-data-loss-does-not-demonstrably-occur-in-an-integral-expression/
http://www.codingstandard.com/rule/4-2-2-ensure-that-data-loss-does-not-demonstrably-occur-in-an-integral-expression/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-narrowingaes46-avoid-lossy-narrowing-truncating-arithmetic-conversions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-narrowingaes46-avoid-lossy-narrowing-truncating-arithmetic-conversions

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

19 template <class F, class A>

20 void f5(F f, A a)

21 {

22 f4(a);

23 }

24 void f6()

25 {

26 // f5(f4, NULL); // Non-compliant - function f4(std::int32_t) not declared

27 f5(f4, nullptr); // Compliant

28 }

See also

• HIC++ v4.0 [8]: 2.5.3 Use nullptr for the null pointer constant

Rule M4-10-2 (required, implementation, automated)
Literal zero (0) shall not be used as the null-pointer-constant.

See MISRA C++ 2008 [6]

6.5 Expressions

6.5.0 General

Rule A5-0-1 (required, implementation, automated)
The value of an expression shall be the same under any order of evaluation
that the standard permits.

Rationale

Apart from a few operators (notably &&, ||, ?: and ,) the order in which sub-
expressions are evaluated is unspecified and can vary. This means that no reliance
can be placed on the order of evaluation of sub-expressions and, in particular, no
reliance can be placed on the order in which side effects occur. Those points in the
evaluation of an expression at which all previous side effects can be guaranteed to
have taken place are called “sequencing”. Sequencing and side effects are described
in Section 1.9(7) of ISO/IEC 14882:2014 [3].

Note that the “order of evaluation” problem is not solved by the use of parentheses, as
this is not a precedence issue.

Example

1 // $Id: A5-0-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stack>

4 // The following notes give some guidance on how dependence on order of

5 // evaluation may occur, and therefore may assist in adopting the rule.

58 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/2-5-3-use-nullptr-for-the-null-pointer-constant/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6

7 // 1) Increment or decrement operators

8 // As an example of what can go wrong, consider

9 void f1(std::uint8_t (&arr)[10], std::uint8_t idx) noexcept(false)

10 {

11 std::uint16_t x = arr[idx] + idx++;

12 }

13 // This will give different results depending on whether arr[idx] is evaluated

14 // before idx++ or vice versa. The problem could be avoided by putting the

15 // increment operation in a separate statement. For example:

16 void f2(std::uint8_t (&arr)[10], std::uint8_t idx) noexcept(false)

17 {

18 std::uint8_t x = arr[idx] + idx;

19 idx++;

20 }

21

22 // 2) Function arguments

23 // The order of evaluation of function arguments is unspecified.

24 extern std::uint8_t func(std::uint8_t x, std::uint8_t y);

25 void f3() noexcept(false)

26 {

27 std::uint8_t i = 0;

28 std::uint8_t x = func(i++, i);

29 }

30 // This will give different results depending on which of the functions two

31 // parameters is evaluated first.

32

33 // 3) Function pointers

34 // If a function is called via a function pointer there shall be no

35 // dependence

36 // on the order in which function-designator and function arguments are

37 // evaluated.

38 struct S

39 {

40 void taskStartFn(S* obj) noexcept(false);

41 };

42 void f4(S* p) noexcept(false)

43 {

44 p->taskStartFn(p++);

45 }

46

47 // 4) Function calls

48 // Functions may have additional effects when they are called (e.g. modifying

49 // some global data). Dependence on order of evaluation could be avoided by

50 // invoking the function prior to the expression that uses it, making use of a

51 // temporary variable for the value. For example:

52 extern std::uint16_t g(std::uint8_t) noexcept(false);

53 extern std::uint16_t z(std::uint8_t) noexcept(false);

54 void f5(std::uint8_t a) noexcept(false)

55 {

56 std::uint16_t x = g(a) + z(a);

59 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

57 }

58 // could be written as

59 void f6(std::uint8_t a) noexcept(false)

60 {

61 std::uint16_t x = g(a);

62 x += z(a);

63 }

64 // As an example of what can go wrong, consider an expression to take two values

65 // off a stack, subtract the second from the first, and push the result back on

66 // the stack:

67 std::int32_t pop(std::stack<std::int32_t>& s)

68 {

69 std::int32_t ret = s.top();

70 s.pop();

71 return ret;

72 }

73 void f7(std::stack<std::int32_t>& s)

74 {

75 s.push(pop(s) - pop(s));

76 }

77 // This will give different results depending on which of the pop() function

78 // calls is evaluated first (because pop() has side effects).

79

80 // 5) Nested assignment statements

81 // Assignments nested within expressions cause additional side effects. The best

82 // way to avoid any possibility of this leading to a dependence on order of

83 // evaluation is not to embed assignments within expressions. For example, the

84 // following is not recommended:

85 void f8(std::int32_t& x) noexcept(false)

86 {

87 std::int32_t y = 4;

88 x = y = y++; // It is undefined whether the final value of y is 4 or 5

89 }

90 // 6) Accessing a volatile

91 // The volatile type qualifier is provided in C++ to denote objects whose value

92 // can change independently of the execution of the program (for example an

93 // input register). If an object of volatile qualified type is accessed this may

94 // change its value. C++ compilers will not optimize out reads of a volatile. In

95 // addition, as far as a C++ program is concerned, a read of a volatile has a

96 // side effect (changing the value of the volatile). It will usually be

97 // necessary to access volatile data as part of an expression, which then means

98 // there may be dependence on order of evaluation. Where possible, though, it is

99 // recommended that volatiles only be accessed in simple assignment statements,

100 // such as the following:

101 void f9(std::uint16_t& x) noexcept(false)

102 {

103 volatile std::uint16_t v;

104 // ...

105 x = v;

106 }

107

60 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

108 // The rule addresses the order of evaluation problem with side effects. Note

109 // that there may also be an issue with the number of times a sub-expression is

110 // evaluated, which is not covered by this rule. This can be a problem with

111 // function invocations where the function is implemented as a macro. For

112 // example, consider the following function-like macro and its invocation:

113 #define MAX(a, b) (((a) > (b)) ? (a) : (b))

114 // ...

115 void f10(std::uint32_t& i, std::uint32_t j)

116 {

117 std::uint32_t z = MAX(i++, j);

118 }

119 // The definition evaluates the first parameter twice if a > b but only once if

120 // a = b. The macro invocation may thus increment i either once or twice,

121 // depending on the values of i and j.

122 // It should be noted that magnitude-dependent effects, such as those due to

123 // floating-point rounding, are also not addressed by this rule. Although

124 // the

125 // order in which side effects occur is undefined, the result of an operation is

126 // otherwise well-defined and is controlled by the structure of the expression.

127 // In the following example, f1 and f2 are floating-point variables; F3, F4

128 // and

129 // F5 denote expressions with floating-point types.

130

131 // f1 = F3 + (F4 + F5);

132 // f2 = (F3 + F4) + F5;

133

134 // The addition operations are, or at least appear to be, performed in the order

135 // determined by the position of the parentheses, i.e. firstly F4 is added to F5

136 // then secondly F3 is added to give the value of f1. Provided that F3, F4 and

137 // F5 contain no side effects, their values are independent of the order in

138 // which they are evaluated. However, the values assigned to f1 and f2 are not

139 // guaranteed to be the same because floating-point rounding following the

140 // addition operations are dependent on the values being added.

See also

• MISRA C++ 2008 [6]: Rule 5-0-1 The value of an expression shall be the same
under any order of evaluation that the standard permits

Rule M5-0-2 (advisory, implementation, partially automated)
Limited dependence should be placed on C++ operator precedence rules in
expressions.

See MISRA C++ 2008 [6]

Rule M5-0-3 (required, implementation, automated)
A cvalue expression shall not be implicitly converted to a different underlying
type.

See MISRA C++ 2008 [6]

61 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M5-0-4 (required, implementation, automated)
An implicit integral conversion shall not change the signedness of the
underlying type.

See MISRA C++ 2008 [6]

Rule M5-0-5 (required, implementation, automated)
There shall be no implicit floating-integral conversions.

See MISRA C++ 2008 [6]

Rule M5-0-6 (required, implementation, automated)
An implicit integral or floating-point conversion shall not reduce the size of
the underlying type.

See MISRA C++ 2008 [6]

Rule M5-0-7 (required, implementation, automated)
There shall be no explicit floating-integral conversions of a cvalue
expression.

See MISRA C++ 2008 [6]

Note: Standard library functions, i.e. std::floor and std::ceil, return a floating-point data
type:

1 void fn() noexcept

2 {

3 float f = -4.5;

4 std::int8_t x1 = static_cast<std::int8_t>(f); // Compliant, x1 = -4

5 std::int8_t x2 =

6 static_cast<std::int8_t>(std::floor(f)); // Compliant, x2 = -5

7 std::int8_t x3 =

8 static_cast<std::int8_t>(std::ceill(f)); // Compliant, x3 = -4

9 }

Rule M5-0-8 (required, implementation, automated)
An explicit integral or floating-point conversion shall not increase the size of
the underlying type of a cvalue expression.

See MISRA C++ 2008 [6]

Rule M5-0-9 (required, implementation, automated)
An explicit integral conversion shall not change the signedness of the
underlying type of a cvalue expression.

62 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See MISRA C++ 2008 [6]

Rule M5-0-10 (required, implementation, automated)
If the bitwise operators ~and << are applied to an operand with an underlying
type of unsigned char or unsigned short, the result shall be immediately cast
to the underlying type of the operand.

See MISRA C++ 2008 [6]

Rule M5-0-11 (required, implementation, automated)
The plain char type shall only be used for the storage and use of character
values.

See MISRA C++ 2008 [6]

Rule M5-0-12 (required, implementation, automated)
Signed char and unsigned char type shall only be used for the storage and
use of numeric values.

See MISRA C++ 2008 [6]

Rule A5-0-2 (required, implementation, automated)
The condition of an if-statement and the condition of an iteration statement
shall have type bool.

Rationale

If an expression with type other than bool is used in the condition of an if-statement
or iteration-statement, then its result will be implicitly converted to bool. The condition
expression shall contain an explicit test (yielding a result of type bool) in order to clarify
the intentions of the developer.

Note that if a type defines an explicit conversion to type bool, then it is said to be
“contextually converted to bool” (Section 4.0(4) of ISO/IEC 14882:2014 [3]) and can be
used as a condition of an if-statement or iteration statement.

Exception

A condition of the form type-specifier-seq declarator is not required to have type bool.
This exception is introduced because alternative mechanisms for achieving the same
effect are cumbersome and error-prone.

Example

1 // $Id: A5-0-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

63 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4 extern std::int32_t* fn();

5 extern std::int32_t fn2();

6 extern bool fn3();

7 void f() noexcept(false)

8 {

9 std::int32_t* ptr = nullptr;

10

11 while ((ptr = fn()) != nullptr) // Compliant

12 {

13 // Code

14 }

15

16 // The following is a cumbersome but compliant example

17 do

18 {

19 std::int32_t* ptr = fn();

20

21 if (nullptr == ptr)

22 {

23 break;

24 }

25

26 // Code

27 } while (true); // Compliant

28

29 std::unique_ptr<std::int32_t> uptr;

30 if (!uptr) // Compliant - std::unique_ptr defines an explicit conversion to

31 // type bool.

32 {

33 // Code

34 }

35

36 while (std::int32_t length = fn2()) // Compliant by exception

37 {

38 // Code

39 }

40

41 while (bool flag = fn3()) // Compliant

42 {

43 // Code

44 }

45

46 if (std::int32_t* ptr = fn())

47 ; // Compliant by exception

48

49 if (std::int32_t length = fn2())

50 ; // Compliant by exception

51

52 if (bool flag = fn3())

53 ; // Compliant

54

64 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

55 std::uint8_t u = 8;

56

57 if (u)

58 ; // Non-compliant

59

60 bool boolean1 = false;

61 bool boolean2 = true;

62

63 if (u && (boolean1 <= boolean2))

64 ; // Non-compliant

65

66 for (std::int32_t x = 10; x; --x)

67 ; // Non-compliant

68 }

See also

• MISRA C++ 2008 [6]: 5-0-13 The condition of an if-statement and the condition
of an iteration statement shall have type bool.

Rule M5-0-14 (required, implementation, automated)
The first operand of a conditional-operator shall have type bool.

See MISRA C++ 2008 [6]

Rule M5-0-15 (required, implementation, automated)
Array indexing shall be the only form of pointer arithmetic.

See MISRA C++ 2008 [6]

Rule M5-0-16 (required, implementation, automated)
A pointer operand and any pointer resulting from pointer arithmetic using
that operand shall both address elements of the same array.

See MISRA C++ 2008 [6]

Note: The next element beyond the end of an array indicates the end of the array.

Rule M5-0-17 (required, implementation, automated)
Subtraction between pointers shall only be applied to pointers that address
elements of the same array.

See MISRA C++ 2008 [6]

Rule M5-0-18 (required, implementation, automated)
>, >=, <, <= shall not be applied to objects of pointer type, except where
they point to the same array.

65 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See MISRA C++ 2008 [6]

Rule A5-0-3 (required, implementation, automated)
The declaration of objects shall contain no more than two levels of pointer
indirection.

Rationale

Use of more than two levels of indirection can seriously impair the ability to understand
the behavior of the code, and therefore should be avoided.

Example

1 // $Id: A5-0-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 using IntPtr = std::int8_t*;

4 struct S

5 {

6 std::int8_t* s1; // Compliant

7 std::int8_t** s2; // Compliant

8 std::int8_t*** s3; // Non-compliant

9 };

10 S* ps1; // Compliant

11 S** ps2; // Compliant

12 S*** ps3; // Non-compliant

13

14 std::int8_t** (*pfunc1)(); // Compliant

15 std::int8_t** (**pfunc2)(); // Compliant

16 std::int8_t** (***pfunc3)(); // Non-compliant

17 std::int8_t*** (**pfunc4)(); // Non-compliant

18

19 void fn(std::int8_t* par1, // Compliant

20 std::int8_t** par2, // Compliant

21 std::int8_t*** par3, // Non-compliant

22 IntPtr* par4, // Compliant

23 IntPtr* const* const par5, // Non-compliant

24 std::int8_t* par6[], // Compliant

25 std::int8_t** par7[]) // Non-compliant

26 {

27 std::int8_t* ptr1; // Compliant

28 std::int8_t** ptr2; // Compliant

29 std::int8_t*** ptr3; // Non-compliant

30 IntPtr* ptr4; // Compliant

31 IntPtr* const* const ptr5 = nullptr; // Non-compliant

32 std::int8_t* ptr6[10]; // Compliant

33 std::int8_t** ptr7[10]; // Compliant

34 }

35 // Explanation of types

36 // 1) par1 and ptr1 are of type pointer to std::int8_t.

37 // 2) par2 and ptr2 are of type pointer to pointer to std::int8_t.

66 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

38 // 3) par3 and ptr3 are of type pointer to a pointer to a pointer

39 // to std::int8_t.

40 // This is three levels and is non-compliant.

41 // 4) par4 and ptr4 are expanded to a type of pointer to a pointer to

42 // std::int8_t.

43 // 5) par5 and ptr5 are expanded to a type of const pointer to a const

44 // pointer

45 // to a pointer to std::int8_t. This is three levels and is non-compliant.

46 // 6) par6 is of type pointer to pointer to std::int8_t because arrays

47 // are converted

48 // to a pointer to the initial element of the array.

49 // 7) ptr6 is of type pointer to array of std::int8_t.

50 // 8) par7 is of type pointer to pointer to pointer to

51 // std::int8_t because arrays are

52 // converted to a pointer to the initial element of the array. This is

53 // three

54 // levels and is non-compliant.

55 // 9) ptr7 is of type array of pointer to pointer to std::int8_t. This

56 // is compliant.

See also

• MISRA C++ 2008 [6]: 5-0-19 The declaration of objects shall contain no more
than two levels of pointer indirection.

Rule M5-0-20 (required, implementation, automated)
Non-constant operands to a binary bitwise operator shall have the same
underlying type.

See MISRA C++ 2008 [6]

Rule M5-0-21 (required, implementation, automated)
Bitwise operators shall only be applied to operands of unsigned underlying
type.

See MISRA C++ 2008 [6]

6.5.1 Primary expression

Rule A5-1-1 (required, implementation, partially automated)
Literal values shall not be used apart from type initialization, otherwise
symbolic names shall be used instead.

Rationale

Avoid use of “magic” numbers and strings in expressions in preference to constant
variables with meaningful names. Literal values are supposed to be used only in type
initialization constructs, e.g. assignments and constructors.

67 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

The use of named constants improves both the readability and maintainability of the
code.

Exception

It is allowed to use literal values in combination with logging mechanism.

Example

1 // $Id: A5-1-1.cpp 271929 2017-03-24 12:05:53Z piotr.tanski $

2 #include <array>

3 #include <cstdint>

4 #include <iostream>

5 #include <stdexcept>

6 namespace

7 {

8 const std::int32_t maxIterations = 10; // Compliant - assignment

9 const char* const loopIterStr = "iter "; // Compliant - assignment

10 const char separator = ’:’; // Compliant - assignment

11 }

12 void f1() noexcept

13 {

14 for (std::int32_t i = 0; i < 10; ++i) // Non-compliant

15 {

16 std::cout << "iter " << i << ’:’ << ’\n’; // Compliant by exception

17 }

18

19 for (std::int32_t i = 0; i < maxIterations; ++i) // Compliant

20 {

21 std::cout << loopIterStr << i << separator << ’\n’; // Compliant

22 }

23

24 for (std::int32_t i = 0; i < maxIterations; ++i) // Compliant

25 {

26 std::cout << "iter " << i << ’:’ << ’\n’; // Compliant by exception

27 }

28 }

29 void f2()

30 {

31 // ...

32 throw std::logic_error("Logic Error"); // Compliant

33 // initialization of exception object

34 }

35 class C

36 {

37 public:

38 C() : x(0), y(nullptr) // Compliant - initialization

39 {

40 }

41 C(std::int8_t num, std::int32_t* ptr) : x(num), y(ptr) {}

42

43 private:

44 std::int8_t x;

68 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

45 std::int32_t* y;

46 };

47 static std::int32_t* globalPointer = nullptr; // Compliant - assignment

48 void f3() noexcept

49 {

50 C c1;

51 // ...

52 C c2(0, globalPointer); // Compliant - initialization of C object

53 }

54 std::int32_t f4(std::int32_t x, std::int32_t y) noexcept

55 {

56 return x + y;

57 }

58 void f5() noexcept

59 {

60 std::int32_t ret = f4(2, 5); // Non-compliant

61 // ...

62 std::int32_t x = 2;

63 std::int32_t y = 5;

64 ret = f4(x, y); // Compliant

65

66 std::array<std::int8_t, 5> arr{{1, 2, 3, 4, 5}}; // Compliant

67 }

See also

• HIC++ v4.0 [8]: 5.1.1 Use symbolic names instead of literal values in code.

Rule A5-1-2 (required, implementation, automated)
Variables shall not be implicitly captured in a lambda expression.

Rationale

Capturing variables explicitly helps document the intention of the author. It also allows
for different variables to be explicitly captured by copy or by reference within the lambda
definition.

Exception

It is allowed to implicitly capture variables with non-automatic storage duration.

Example

1 // $Id: A5-1-2.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <algorithm>

3 #include <cstdint>

4 #include <vector>

5 void fn1(const std::vector<std::int32_t>& v)

6 {

7 std::uint64_t sum = 0;

8 std::for_each(v.begin(), v.end(), [&](std::int32_t lhs) {

9 sum += lhs;

69 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-1-1-use-symbolic-names-instead-of-literal-values-in-code/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

10 }); // Non-compliant

11

12 sum = 0;

13 std::for_each(v.begin(), v.end(), [&sum](std::int32_t lhs) {

14 sum += lhs;

15 }); // Compliant

16 }

17 void fn2()

18 {

19 constexpr std::uint8_t n = 10;

20 static std::int32_t j = 0;

21 [n]() {

22 std::int32_t array[n]; // Compliant

23 j += 1; // Compliant by exception

24 };

25 }

See also

• HIC++ v4.0 [8]: 5.1.4 Do not capture variables implicitly in a lambda.

Rule A5-1-3 (required, implementation, automated)
Parameter list (possibly empty) shall be included in every lambda
expression.

Rationale

The lambda-declarator is optional in a lambda expression and results in a closure that
can be called without any parameters.

To avoid any visual ambiguity with other C++ constructs, it is recommended to explicitly
include (), even though it is not strictly required.

Example
1 // $Id: A5-1-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn()

4 {

5 std::int32_t i = 0;

6 std::int32_t j = 0;

7 auto lambda1 = [&i, &j] { ++i, ++j; }; // Non-compliant

8 auto lambda2 = [&i, &j]() {

9 ++i;

10 ++j;

11 }; // Compliant

12 }

See also

• HIC++ v4.0 [8]: 5.1.5 Include a (possibly empty) parameter list in every lambda
expression

70 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-1-4-do-not-capture-variables-implicitly-in-a-lambda
http://www.codingstandard.com/rule/5-1-5-include-a-possibly-empty-parameter-list-in-every-lambda-expression
http://www.codingstandard.com/rule/5-1-5-include-a-possibly-empty-parameter-list-in-every-lambda-expression

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A5-1-4 (required, implementation, automated)
A lambda expression object shall not outlive any of its reference-captured
objects.

Rationale

When an object is captured by reference in a lambda, lifetime of the object is not tied
to the lifetime of the lambda.

If a lambda object leaves the scope of one of its reference-captured object, the
execution of the lambda expression results in an undefined behavior once the
reference-captured object is accessed.

Example
1 // $Id: A5-1-4.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 #include <functional>

4 std::function<std::int32_t()> f()

5 {

6 std::int32_t i = 12;

7 return ([&i]() -> std::int32_t {

8 i = 100;

9 return i;

10 }); // Non-compliant

11 }

12 std::function<std::int32_t()> g()

13 {

14 std::int32_t i = 12;

15 return ([i]() mutable -> std::int32_t { return ++i; }); // Compliant

16 }

17 void fn()

18 {

19 auto lambda1 = f();

20 std::int32_t i = lambda1(); // Undefined behavior

21 auto lambda2 = g();

22 i = lambda2(); // lambda2() returns 13

23 }

See also

• SEI CERT C++ [9]: EXP61-CPP. A lambda object must not outlive any of its
reference captured objects.

Rule A5-1-5 (advisory, implementation, non-automated)
If a lambda expression is used in the same scope in which it has been
defined, the lambda should capture objects by reference.

Rationale

Copying objects captured to lambda by value may be a performance overhead. It is
correct to capture objects by reference when using the lambda expression locally only.

71 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/EXP61-CPP.+A+lambda+object+must+not+outlive+any+of+its+reference+captured+objects
https://www.securecoding.cert.org/confluence/display/cplusplus/EXP61-CPP.+A+lambda+object+must+not+outlive+any+of+its+reference+captured+objects

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Exception

It is permitted to capture by copy objects that size is lesser or equal to 16 bytes (i.e.
4 * sizeof(std::uint32_t)).

Example
1 // $Id: A5-1-5.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 #include <functional>

4 namespace

5 {

6 constexpr std::int32_t bufferMax = 1024;

7 constexpr std::int8_t receiversMax = 10;

8 }

9 class UDPClient

10 {

11 // Implementation - size of UDPClient class exceeds 16 bytes

12 };

13 void f1() noexcept(false)

14 {

15 UDPClient client;

16 std::uint8_t buffer[bufferMax];

17 auto lambda1 = [client,

18 buffer]() // Non-compliant - it is inefficient to capture

19 // UDPClient and buffer objects by copy in lambda

20 {

21 // Code

22 };

23 lambda1(); // lambda1 used locally only

24

25 auto lambda2 =

26 [&client, &buffer]() // Compliant - be aware that this construct

27 // may introduce data races in parallel calls.

28 {

29 // Code

30 };

31 lambda2(); // lambda2 used locally only

32

33 std::uint32_t number1 = 10;

34 std::uint32_t number2 = 20;

35 auto lambda3 = [number1, number2]() // Compliant by exception - the size of

36 // std::uint32_t is 4 bytes (lesser or

37 // equal to the size of a pointer -

38 // depending on architecture)

39 {

40 // Code

41 };

42 lambda3(); // lambda3 used locally only

43 }

44 void f2(std::int8_t currentReceiver) noexcept(false)

45 {

46 std::function<void()> receiver;

72 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

47

48 if (currentReceiver < receiversMax)

49 {

50 UDPClient client;

51 receiver =

52 [&client]() // Non-compliant - lambda is not used locally, client

53 // object will go out of scope

54 {

55 // Code

56 };

57 }

58

59 // ...

60 receiver(); // Undefined behavior, client object went out of scope

61 }

See also

• C++ Core Guidelines [10]: F.52: Prefer capturing by reference in lambdas that
will be used locally, including passed to algorithms captured objects.

Rule A5-1-6 (advisory, implementation, automated)
Return type of a non-void return type lambda expression should be explicitly
specified.

Rationale

If a non-void return type lambda expression does not specify its return type, then it may
be confusing which type it returns. It leads to developers confusion.

Note that, while the return type is specified, implicit conversion between type of
returned value and return type specified in the lambda expression may occur. This
problem should not be ignored.

Example
1 // $Id: A5-1-6.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn() noexcept

4 {

5 auto lambda1 = []() -> std::uint8_t {

6 std::uint8_t ret = 0U;

7 // ...

8 return ret;

9 }; // Compliant

10 auto lambda2 = []() {

11 // ...

12 return 0U;

13 }; // Non-compliant - returned type is not specified

14 auto x = lambda1(); // Type of x is std::uint8_t

15 auto y = lambda2(); // What is the type of y?

16 }

73 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-reference-capture
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-reference-capture

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See also

• none

Rule A5-1-7 (required, implementation, automated)
The underlying type of lambda expression shall not be used.

Rationale

“The type of the lambda-expression (which is also the type of the closure object) is a
unique, unnamed non-union class type [...]” [C++14 Language Standard] [3]

Each lambda expression has a different unique underlying type, and therefore the type
is not to be used either as function argument, template argument or operand to built-in
or overloaded operator.

Example

1 // $Id: A5-1-7.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <functional>

4 #include <vector>

5 void fn()

6 {

7 auto lambda1 = []() -> std::int8_t { return 1; };

8 auto lambda2 = []() -> std::int8_t { return 1; };

9

10 if (typeid(lambda1) == typeid(lambda2)) // Non-compliant - types of lambda1

11 // and lambda2 are different

12 {

13 // ...

14 }

15

16 std::vector<decltype(lambda1)> v; // Non-compliant

17 // v.push_back([]() { return 1; }); // Compilation error, type of pushed

18 // lambda is different than decltype(lambda1)

19 // using mylambda_t = decltype([](){ return 1; }); // Non-compliant -

20 // compilation error

21 auto lambda3 = []() { return 2; };

22 using lambda3_t = decltype(lambda3); // Non-compliant - lambda3_t type can

23 // not be used for lambda expression

24 // declarations

25 // lambda3_t lambda4 = []() { return 2; }; // Conversion error at

26 // compile-time

27 std::function<std::int32_t()> f1 = []() { return 3; };

28 std::function<std::int32_t()> f2 = []() { return 3; };

29

30 if (typeid(f1) == typeid(f2)) // Compliant - types are equal

31 {

32 // ...

33 }

34 }

74 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See also

• none

Rule A5-1-8 (advisory, implementation, automated)
Lambda expressions should not be defined inside another lambda
expression.

Rationale

Defining lambda expressions inside other lambda expressions reduces readability of
the code.

Example
1 // $Id: A5-1-8.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn1()

4 {

5 std::int16_t x = 0;

6 auto f1 = [&x]() {

7

8 auto f2 = []() {}; // Non-compliant

9 f2();

10

11 auto f4 = []() {}; // Non-compliant

12 f4();

13

14 }; // Non-compliant

15

16 f1();

17 }

18 void fn2()

19 {

20 auto f5 = []() {

21 // Implementation

22 }; // Compliant

23 f5();

24 }

See also

• none

6.5.2 Postfix expressions

Rule M5-2-1 (required, implementation, automated)
Each operand of a logical &&, || shall be a postfix expression.

See MISRA C++ 2008 [6]

75 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M5-2-2 (required, implementation, automated)
A pointer to a virtual base class shall only be cast to a pointer to a derived
class by means of dynamic_cast.

See MISRA C++ 2008 [6]

Rule M5-2-3 (advisory, implementation, automated)
Casts from a base class to a derived class should not be performed on
polymorphic types.

See MISRA C++ 2008 [6]

Note: Type is polymorphic if it declares or inherits at least one virtual function.

Rule A5-2-1 (advisory, implementation, automated)
dynamic_cast should not be used.

Rationale

Implementations of dynamic_cast mechanism are unsuitable for use with real-time
systems where low memory usage and determined performance are essential.

If dynamic casting is essential for your program, usage of its custom implementation
should be considered. Also, usage of the dynamic_cast can be replaced with
polymorphism, i.e. virtual functions.

Example
1 // $Id: A5-2-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual void f() noexcept;

6 };

7 class B : public A

8 {

9 public:

10 void f() noexcept override {}

11 };

12 void fn(A* aptr) noexcept

13 {

14 // ...

15 B* bptr = dynamic_cast<B*>(aptr); // Non-compliant

16

17 if (bptr != nullptr)

18 {

19 // Use B class interface

20 }

21 else

22 {

76 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

23 // Use A class interface

24 }

25 }

See also

• C++ Core Guidelines [10]: C.146: Use dynamic_cast where class hierarchy
navigation is unavoidable.

• Journal of Computing Science and Engineering, Damian Dechev, Rabi
Mahapatra, Bjarne Stroustrup: Practical and Verifiable C++ Dynamic Cast for
Hard Real-Time Systems.

• Software-Practice and Experience, Michael Gibbs and Bjarne Stroustrup: Fast
dynamic casting.

Rule A5-2-2 (required, implementation, automated)
Traditional C-style casts shall not be used.

Rationale

C-style casts are more dangerous than the C++ named conversion operators. The C-
style casts are difficult to locate in large programs and the intent of the conversion is
not explicit.

Traditional C-style casts raise several concerns:

• C-style casts enable most any type to be converted to most any other type without
any indication of the reason for the conversion

• C-style cast syntax is difficult to identify for both reviewers and tools.
Consequently, both the location of conversion expressions as well as the
subsequent analysis of the conversion rationale proves difficult for C-style casts

Thus, C++ introduces casts (const_cast, dynamic_cast, reinterpret_cast, and
static_cast) that address these problems. These casts are not only easy to identify,
but they also explicitly communicate the developer’s intent for applying a cast.

Example

1 // $Id: A5-2-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 class C

4 {

5 public:

6 explicit C(std::int32_t) {}

7 virtual void fn() noexcept {}

8 };

9 class D : public C

10 {

11 public:

12 void fn() noexcept override {}

77 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast
http://www.stroustrup.com/fdc_jcse.pdf
http://www.stroustrup.com/fdc_jcse.pdf
http://www.stroustrup.com/fast_dynamic_casting.pdf
http://www.stroustrup.com/fast_dynamic_casting.pdf

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

13 };

14 class E

15 {

16 };

17 std::int32_t g() noexcept

18 {

19 return 7;

20 }

21 void f() noexcept(false)

22 {

23 C a1 = C{10}; // Compliant

24 C* a2 = (C*)(&a1); // Non-compliant

25 const C a3(5);

26 C* a4 = const_cast<C*>(&a3); // Compliant - violates another rule

27 E* d1 = reinterpret_cast<E*>(a4); // Compliant - violates another rule

28 D* d2 = dynamic_cast<D*>(a2); // Compliant - violates another rule

29 std::int16_t x1 = 20;

30 std::int32_t x2 = static_cast<std::int32_t>(x1); // Compliant

31 std::int32_t x3 = (std::int32_t)x1; // Non-compliant

32 std::int32_t x4 = 10;

33 float f1 = static_cast<float>(x4); // Compliant

34 float f2 = (float)x4; // Non-compliant

35 std::int32_t x5 = static_cast<std::int32_t>(f1); // Compliant

36 std::int32_t x6 = (std::int32_t)f1; // Non-compliant

37 (void)g(); // Non-compliant

38 static_cast<void>(g()); // Compliant

39 }

See also

• MISRA C++ 2008 [6]: 5-2-4 C-style casts (other than void casts) and functional
notation casts (other than explicit constructor calls) shall not be used.

• JSF December 2005 [7]: AV Rule 185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be used instead of the traditional C-style
casts.

Rule A5-2-3 (required, implementation, automated)
A cast shall not remove any const or volatile qualification from the type of a
pointer or reference.

Rationale

Removal of the const or volatile qualification may not meet developer expectations as
it may lead to undefined behavior.

Note that either const_cast and traditional C-style casts that remove const or volatile
qualification shall not be used.

Example

1 // $Id: A5-2-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

78 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2 #include <cstdint>

3 void f1(const char* str) noexcept(false)

4 {

5 *(const_cast<char*>(str)) =

6 ’\0’; // Non-compliant - const qualification removed

7 }

8 class C

9 {

10 public:

11 explicit C(std::int32_t) {}

12 };

13 void f2() noexcept(false)

14 {

15 C const a1 = C(10);

16 C* a2 = const_cast<C*>(&a1); // Non-compliant - const qualification removed

17 C* a3 = (C*)&a1; // Non-compliant - const qualification removed

18 }

19 extern volatile std::int32_t* f3() noexcept;

20 void f4() noexcept

21 {

22 volatile std::int32_t* ptr1 = f3();

23 // ...

24 std::int32_t* ptr2 = const_cast<std::int32_t*>(

25 ptr1); // Non-compliant - volatile qualification removed

26 // ...

27 std::int32_t* ptr3 =

28 (std::int32_t*)ptr1; // Non-compliant - volatile qualification removed

29 }

See also

• MISRA C++ 2008 [6]: 5-2-5 A cast shall not remove any const or volatile
qualification from the type of a pointer or reference.

Rule M5-2-6 (required, implementation, automated)
A cast shall not convert a pointer to a function to any other pointer type,
including a pointer to function type.

See MISRA C++ 2008 [6]

Rule A5-2-4 (required, implementation, automated)
reinterpret_cast shall not be used.

Rationale

Use of reinterpret_cast may violate type safety and cause the program to access a
variable as if it were of another, unrelated type.

Example

79 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A5-2-4.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 void f1() noexcept

5 {

6 std::string str = "Hello";

7 std::int32_t* ptr = reinterpret_cast<std::int32_t*>(&str); // Non-compliant

8 }

9 struct A

10 {

11 std::int32_t x;

12 std::int32_t y;

13 };

14 class B

15 {

16 public:

17 virtual ~B() {}

18

19 private:

20 std::int32_t x;

21 };

22 class C : public B

23 {

24 };

25 class D : public B

26 {

27 };

28 void f2(A* ptr) noexcept

29 {

30 B* b1 = reinterpret_cast<B*>(ptr); // Non-compliant

31 std::int32_t num = 0;

32 A* a1 = reinterpret_cast<A*>(num); // Non-compliant

33 A* a2 = (A*)

34 num; // Compliant with this rule, but non-compliant with Rule A5-2-2.

35 B* b2 = reinterpret_cast<B*>(num); // Non-compliant

36 D d;

37 C* c1 = reinterpret_cast<C*>(&d); // Non-compliant - cross cast

38 C* c2 = (C*)&d; // Compliant with this rule, but non-compliant with Rule

39 // A5-2-2. Cross-cast.

40 B* b3 = &d; // Compliant - class D is a subclass of class B

41 }

See also

• MISRA C++ 2008 [6]: Rule 5-2-7 An object with pointer type shall not be
converted to an unrelated pointer type, either directly or indirectly.

• C++ Core Guidelines [10]: Type.1: Don’t use reinterpret_cast.

80 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-reinterpretcast

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M5-2-8 (required, implementation, automated)
An object with integer type or pointer to void type shall not be converted to
an object with pointer type.

See MISRA C++ 2008 [6]

Rule M5-2-9 (required, implementation, automated)
A cast shall not convert a pointer type to an integral type.

See MISRA C++ 2008 [6]

Note: Obligation level changed.

Rule M5-2-10 (required, implementation, automated)
The increment (++) and decrement (−−) operators shall not be mixed with
other operators in an expression.

See MISRA C++ 2008 [6]

Note: Obligation level changed.

Rule M5-2-11 (required, implementation, automated)
The comma operator, && operator and the || operator shall not be overloaded.

See MISRA C++ 2008 [6]

Rule A5-2-5 (required, implementation, automated)
An array shall not be accessed beyond its range.

Rationale

To avoid undefined behavior, range checks should be coded to ensure that the array
access via pointer arithmetic or subscript operator is within defined bounds.

This could be also achieved by accessing an array via subscript operator with constant
indexes only.

Note that this rule applies to C-style arrays and all other containers that access their
elements using input index without range-checks.

Also, note that calculating an address one past the last element of the array is well
defined, but dereferencing it is not.

Example

1 // $Id: A5-2-5.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <array>

81 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

3 #include <cstdint>

4 #include <iostream>

5 void fn1() noexcept

6 {

7 constexpr std::int32_t arraySize = 16;

8 std::int32_t array[arraySize]{0};

9

10 std::int32_t elem1 =

11 array[0]; // Compliant - access with constant literal that

12 // is less than ArraySize

13 std::int32_t elem2 =

14 array[12]; // Compliant - access with constant literal that

15 // is less than ArraySize

16 for (std::int32_t idx = 0; idx < 20; ++idx)

17 {

18 std::int32_t elem3 =

19 array[idx]; // Non-compliant - access beyond ArraySize

20 // bounds, which has 16 elements

21 }

22

23 std::int32_t shift = 25;

24 std::int32_t elem4 =

25 *(array + shift); // Non-compliant - access beyond ArraySize bounds

26

27 std::int32_t index = 0;

28 std::cin >> index;

29 std::int32_t elem5 =

30 array[index]; // Non-compliant - index may exceed the ArraySize bounds

31 if (index < arraySize)

32 {

33 std::int32_t elem6 = array[index]; // Compliant - range check coded

34 }

35 }

36 void fn2() noexcept

37 {

38 constexpr std::int32_t arraySize = 32;

39 std::array<std::int32_t, arraySize> array;

40 array.fill(0);

41

42 std::int32_t elem1 =

43 array[10]; // Compliant - access with constant literal that

44 // is less than ArraySize

45 std::int32_t index = 40;

46 std::int32_t elem2 =

47 array[index]; // Non-compliant - access beyond ArraySize bounds

48 try

49 {

50 std::int32_t elem3 =

51 array.at(50); // Compliant - at() method provides a

52 // range check, throwing an exception if

53 // input exceeds the bounds

82 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

54 }

55 catch (std::out_of_range&)

56 {

57 // Handle an error

58 }

59

60 for (auto&& e : array) // The std::array provides a possibility to iterate

61 // over its elements with range-based loop

62 {

63 // Iterate over all elements

64 }

65 }

See also

• HIC++ v4.0 [8]: 5.2.1 Ensure that pointer or array access is demonstrably within
bounds of a valid object.

Rule M5-2-12 (required, implementation, automated)
An identifier with array type passed as a function argument shall not decay
to a pointer.

See MISRA C++ 2008 [6]

6.5.3 Unary expressions

Rule M5-3-1 (required, implementation, automated)
Each operand of the ! operator, the logical && or the logical || operators
shall have type bool.

See MISRA C++ 2008 [6]

Rule M5-3-2 (required, implementation, automated)
The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

See MISRA C++ 2008 [6]

Rule M5-3-3 (required, implementation, automated)
The unary & operator shall not be overloaded.

See MISRA C++ 2008 [6]

83 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-2-1-ensure-that-pointer-or-array-access-is-demonstrably-within-bounds-of-a-valid-object/
http://www.codingstandard.com/rule/5-2-1-ensure-that-pointer-or-array-access-is-demonstrably-within-bounds-of-a-valid-object/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M5-3-4 (required, implementation, automated)
Evaluation of the operand to the sizeof operator shall not contain side
effects.

See MISRA C++ 2008 [6]

Rule A5-3-1 (required, implementation, non-automated)
Evaluation of the operand to the typeid operator shall not contain side
effects.

Rationale

The operand of typeid operator is evaluated only if it is a function call which returns a
reference to a polymorphic type.

Providing side effects to typeid operator, which takes place only under special
circumstances, makes the code more difficult to maintain.

Example
1 // $Id: A5-3-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <typeinfo>

3 bool sideEffects() noexcept

4 {

5 // Implementation

6 return true;

7 }

8 class A

9 {

10 public:

11 static A& f1() noexcept { return a; }

12 virtual ~A() {}

13

14 private:

15 static A a;

16 };

17 A A::a;

18 void f2() noexcept(false)

19 {

20 typeid(sideEffects()); // Non-compliant - sideEffects() function not called

21 typeid(A::f1()); // Non-compliant - A::f1() functions called to determine

22 // the polymorphic type

23 }

See also

• HIC++ v4.0 [8]: 5.1.6 Do not code side effects into the right-hand operands of:
&&, ||, sizeof, typeid or a function passed to condition_variable::wait.

6.5.6 Multiplicative operators

84 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-1-6-do-not-code-side-effects-into-the-right-hand-operands-of-sizeof-typeid-or-a-function-passed-to-condition_variablewait/
http://www.codingstandard.com/rule/5-1-6-do-not-code-side-effects-into-the-right-hand-operands-of-sizeof-typeid-or-a-function-passed-to-condition_variablewait/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A5-5-1 (required, implementation, automated)
The right hand operand of the integer division or remainder operators shall
not be equal to zero.

Rationale

The result is undefined if the right hand operand of the integer division or the remainder
operator is zero.

Example
1 // $Id: A5-5-1.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 std::int32_t division1(std::int32_t a, std::int32_t b) noexcept

5 {

6 return (a / b); // Non-compliant - value of b could be zero

7 }

8 std::int32_t division2(std::int32_t a, std::int32_t b)

9 {

10 if (b == 0)

11 {

12 throw std::runtime_error("Division by zero error");

13 }

14 return (a / b); // Compliant - value of b checked before division

15 }

16 double fn()

17 {

18 std::int32_t x = 20 / 0; // Non-compliant - undefined behavior

19 x = division1(20, 0); // Undefined behavior

20 x = division2(20,

21 0); // Preconditions check will throw a runtime_error from

22 // division2() function

23 std::int32_t remainder = 20 % 0; // Non-compliant - undefined behavior

24 }

See also

• HIC++ v4.0 [8]: 5.5.1 Ensure that the right hand operand of the division or
remainder operators is demonstrably non-zero.

• C++ Core Guidelines [10]: ES.105: Don’t divide by zero.

6.5.8 Shift operators

Rule M5-8-1 (required, implementation, partially automated)
The right hand operand of a shift operator shall lie between zero and one
less than the width in bits of the underlying type of the left hand operand.

See MISRA C++ 2008 [6]

85 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/5-5-multiplicative-operators/
http://www.codingstandard.com/section/5-5-multiplicative-operators/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-zeroaes105-dont-divide-by-zero

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.5.10 Equality operators

Rule A5-10-1 (required, implementation, automated)
A pointer to member virtual function shall only be tested for equality with
null-pointer-constant.

Rationale

The result of equality comparison between pointer to member virtual function and
anything other than null-pointer-constant (i.e. nullptr, see: A4-10-1) is unspecified.

Example

1 // $Id: A5-10-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual ~A() = default;

6 void f1() noexcept {}

7 void f2() noexcept {}

8 virtual void f3() noexcept {}

9 };

10

11 void fn()

12 {

13 bool b1 = (&A::f1 == &A::f2); // Compliant

14 bool b2 = (&A::f1 == nullptr); // Compliant

15 bool b3 = (&A::f3 == nullptr); // Compliant

16 bool b4 = (&A::f3 != nullptr); // Compliant

17 bool b5 = (&A::f3 == &A::f1); // Non-compliant

18 }

See also

• HIC++ v4.0 [8]: 5.7.2 Ensure that a pointer to member that is a virtual function is
only compared (==) with nullptr.

• JSF December 2005 [7]: AV Rule 97.1 Neither operand of an equality operator
(== or !=) shall be a pointer to a virtual member function.

6.5.14 Logical AND operator

Rule M5-14-1 (required, implementation, automated)
The right hand operand of a logical &&, || operators shall not contain side
effects.

See MISRA C++ 2008 [6]

86 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-7-2-ensure-that-a-pointer-to-member-that-is-a-virtual-function-is-only-compared-with-nullptr/
http://www.codingstandard.com/rule/5-7-2-ensure-that-a-pointer-to-member-that-is-a-virtual-function-is-only-compared-with-nullptr/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.5.16 Conditional operator

Rule A5-16-1 (required, implementation, automated)
The ternary conditional operator shall not be used as a sub-expression.

Rationale

Using the result of the ternary conditional operator as an operand or nesting conditional
operators makes the code less readable and more difficult to maintain.

Example
1 // $Id: A5-16-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 constexpr bool fn1(std::int32_t x)

4 {

5 return (x > 0); // Compliant

6 }

7 std::int32_t fn2(std::int32_t x)

8 {

9 std::int32_t i = (x >= 0 ? x : 0); // Compliant

10

11 std::int32_t j =

12 x + (i == 0 ? (x >= 0 ? x : -x) : i); // Non-compliant - nested

13 // conditional operator

14 // and used as a

15 // sub-expression

16 return (

17 i > 0

18 ? (j > 0 ? i + j : i)

19 : (j > 0 ? j : 0)); // Non-compliant - nested conditional operator

20 }

See also

• HIC++ v4.0 [8]: 5.8.1 Do not use the conditional operator (?:) as a sub-
expression.

6.5.18 Assignment and compound assignment operation

Rule M5-17-1 (required, implementation, non-automated)
The semantic equivalence between a binary operator and its assignment
operator form shall be preserved.

See MISRA C++ 2008 [6]

6.5.19 Comma operator

87 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-8-1-do-not-use-the-conditional-operator-as-a-sub-expression/
http://www.codingstandard.com/rule/5-8-1-do-not-use-the-conditional-operator-as-a-sub-expression/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M5-18-1 (required, implementation, automated)
The comma operator shall not be used.

See MISRA C++ 2008 [6]

6.5.20 Constant expression

Rule M5-19-1 (required, implementation, automated)
Evaluation of constant unsigned integer expressions shall not lead to wrap-
around.

See MISRA C++ 2008 [6]

Note: Obligation level changed

Note: This rule applies to bit-fields, too.

6.6 Statements

6.6.2 Expression statement

Rule M6-2-1 (required, implementation, automated)
Assignment operators shall not be used in sub-expressions.

See MISRA C++ 2008 [6]

Exception

It is allowed that a condition of the form type-specifier-seq declarator uses an
assignment operator. This exception is introduced because alternative mechanisms
for achieving the same effect are cumbersome and error-prone.

Rule M6-2-2 (required, implementation, partially automated)
Floating-point expressions shall not be directly or indirectly tested for
equality or inequality.

See MISRA C++ 2008 [6]

Rule M6-2-3 (required, implementation, automated)
Before preprocessing, a null statement shall only occur on a line by itself;
it may be followed by a comment, provided that the first character following
the null statement is a white-space character.

See MISRA C++ 2008 [6]

88 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.6.3 Compound statement or block

Rule M6-3-1 (required, implementation, automated)
The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

See MISRA C++ 2008 [6]

6.6.4 Selection statements

Rule M6-4-1 (required, implementation, automated)
An if (condition) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another
if statement.

See MISRA C++ 2008 [6]

Rule M6-4-2 (required, implementation, automated)
All if ... else if constructs shall be terminated with an else clause.

See MISRA C++ 2008 [6]

Rule M6-4-3 (required, implementation, automated)
A switch statement shall be a well-formed switch statement.

See MISRA C++ 2008 [6]

Rule M6-4-4 (required, implementation, automated)
A switch-label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

See MISRA C++ 2008 [6]

Rule M6-4-5 (required, implementation, automated)
An unconditional throw or break statement shall terminate every non-empty
switch-clause.

See MISRA C++ 2008 [6]

Rule M6-4-6 (required, implementation, automated)
The final clause of a switch statement shall be the default-clause.

See MISRA C++ 2008 [6]

89 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M6-4-7 (required, implementation, automated)
The condition of a switch statement shall not have bool type.

See MISRA C++ 2008 [6]

Note: "‘The condition shall be of integral type, enumeration type, or class type. If of
class type, the condition is contextually implicitly converted (Clause 4) to an integral or
enumeration type."’ [C++14 Language Standard, 6.4.2 The switch statement]

Rule A6-4-1 (required, implementation, automated)
A switch statement shall have at least two case-clauses, distinct from the
default label.

Rationale

A switch statement constructed with less than two case-clauses can be expressed as
an if statement more naturally.

Note that a switch statement with no case-clauses is redundant.

Example

1 // $Id: A6-4-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void f1(std::uint8_t choice) noexcept

4 {

5 switch (choice)

6 {

7 default:

8 break;

9 } // Non-compliant, the switch statement is redundant

10 }

11 void f2(std::uint8_t choice) noexcept

12 {

13 switch (choice)

14 {

15 case 0:

16 // ...

17 break;

18

19 default:

20 // ...

21 break;

22 } // Non-compliant, only 1 case-clause

23

24 if (choice == 0) // Compliant, an equivalent if statement

25 {

26 // ...

27 }

28 else

29 {

90 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

30 // ...

31 }

32

33 // ...

34 switch (choice)

35 {

36 case 0:

37 // ...

38 break;

39

40 case 1:

41 // ...

42 break;

43

44 default:

45 // ...

46 break;

47 } // Compliant

48 }

See also

• MISRA C++ 2008 [6]: Rule 6-4-8 Every switch statement shall have at least one
case-clause.

• HIC++ v4.0 [8]: 6.1.4 Ensure that a switch statement has at least two case labels,
distinct from the default label.

6.6.5 Iteration statements

Rule A6-5-1 (required, implementation, automated)
A for-loop that loops through all elements of the container and does not use
its loop-counter shall not be used.

Rationale

A for-loop that simply loops through all elements of the container and does not use its
loop-counter is equivalent to a range-based for statement that reduces the amount of
code to maintain correct loop semantics.

Example

1 // $Id: A6-5-1.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdint>

3 #include <iterator>

4 void fn() noexcept

5 {

6 constexpr std::int8_t arraySize = 7;

7 std::uint32_t array[arraySize] = {0, 1, 2, 3, 4, 5, 6};

8

91 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/6-1-4-ensure-that-a-switch-statement-has-at-least-two-case-labels-distinct-from-the-default-label/
http://www.codingstandard.com/rule/6-1-4-ensure-that-a-switch-statement-has-at-least-two-case-labels-distinct-from-the-default-label/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

9 for (std::int8_t idx = 0; idx < arraySize; ++idx) // Compliant

10 {

11 array[idx] = idx;

12 }

13

14 for (std::int8_t idx = 0; idx < arraySize / 2;

15 ++idx) // Compliant - for does not loop though all elements

16 {

17 // ...

18 }

19

20 for (std::uint32_t* iter = std::begin(array); iter != std::end(array);

21 ++iter) // Non-compliant

22 {

23 // ...

24 }

25

26 for (std::int8_t idx = 0; idx < arraySize; ++idx) // Non-compliant

27 {

28 // ...

29 }

30

31 for (std::uint32_t value :

32 array) // Compliant - equivalent to non-compliant loops above

33 {

34 // ...

35 }

36

37 for (std::int8_t idx = 0; idx < arraySize; ++idx) // Compliant

38 {

39 if ((idx % 2) == 0)

40 {

41 // ...

42 }

43 }

44 }

See also

• HIC++ v4.0 [8]: 6.2.1 Implement a loop that only uses element values as a range-
based loop.

• C++ Core Guidelines [10]: ES.71: Prefer a range-for-statement to a for-statement
when there is a choice.

Rule A6-5-2 (required, implementation, automated)
A for loop shall contain a single loop-counter which shall not have floating-
point type.

92 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/6-2-1-implement-a-loop-that-only-uses-element-values-as-a-range-based-loop/
http://www.codingstandard.com/rule/6-2-1-implement-a-loop-that-only-uses-element-values-as-a-range-based-loop/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

A for loop without a loop-counter is simply a while loop. If this is the desired behavior,
then a while loop is more appropriate.

Floating types, as they should not be tested for equality/inequality, are not to be used
as loop-counters.

Example

1 // $Id: A6-5-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 namespace

4 {

5 constexpr std::int32_t xlimit = 20;

6 constexpr std::int32_t ylimit = 15;

7 constexpr float zlimit = 2.5F;

8 constexpr std::int32_t ilimit = 100;

9 }

10 void fn() noexcept

11 {

12 std::int32_t y = 0;

13

14 for (std::int32_t x = 0; x < xlimit && y < ylimit;

15 x++, y++) // Non-compliant, two loop-counters

16 {

17 // ...

18 }

19

20 for (float z = 0.0F; z != zlimit;

21 z += 0.1F) // Non-compliant, float with !=

22 {

23 // ...

24 }

25

26 for (float z = 0.0F; z < zlimit; z += 0.1F) // Non-compliant, float with <

27 {

28 // ...

29 }

30

31 for (std::int32_t i = 0; i < ilimit; ++i) // Compliant

32 {

33 // ...

34 }

35 }

See also

• MISRA C++ 2008 [6]: Rule 6-5-1 A for loop shall contain a single loop-counter
which shall not have floating type.

93 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M6-5-2 (required, implementation, automated)
If loop-counter is not modified by −− or ++, then, within condition, the loop-
counter shall only be used as an operand to <=, <, > or >=.

See MISRA C++ 2008 [6]

Rule M6-5-3 (required, implementation, automated)
The loop-counter shall not be modified within condition or statement.

See MISRA C++ 2008 [6]

Rule M6-5-4 (required, implementation, automated)
The loop-counter shall be modified by one of: −−, ++, − = n, or + = n;
where n remains constant for the duration of the loop.

See MISRA C++ 2008 [6]

Note: “n remains constant for the duration of the loop” means that “n” can be either a
literal, a constant or constexpr value.

Rule M6-5-5 (required, implementation, automated)
A loop-control-variable other than the loop-counter shall not be modified
within condition or expression.

See MISRA C++ 2008 [6]

Rule M6-5-6 (required, implementation, automated)
A loop-control-variable other than the loop-counter which is modified in
statement shall have type bool.

See MISRA C++ 2008 [6]

6.6.6 Jump statements

Rule A6-6-1 (required, implementation, automated)
The goto statement shall not be used.

Rationale

Using goto statement significantly complicates the logic, makes the code difficult to
read and maintain, and may lead to incorrect resources releases or memory leaks.

Example

94 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A6-6-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 namespace

4 {

5 constexpr std::int32_t loopLimit = 100;

6 }

7 void f1(std::int32_t n) noexcept

8 {

9 if (n < 0)

10 {

11 // goto exit; // Non-compliant - jumping to exit from here crosses ptr

12 // pointer initialization, compilation

13 // error

14 }

15

16 std::int32_t* ptr = new std::int32_t(n);

17 // ...

18 exit:

19 delete ptr;

20 }

21 void f2() noexcept

22 {

23 // ...

24 goto error; // Non-compliant

25 // ...

26 error:; // Error handling and cleanup

27 }

28 void f3() noexcept

29 {

30 for (std::int32_t i = 0; i < loopLimit; ++i)

31 {

32 for (std::int32_t j = 0; j < loopLimit; ++j)

33 {

34 for (std::int32_t k = 0; k < loopLimit; ++k)

35 {

36 if ((i == j) && (j == k))

37 {

38 // ...

39 goto loop_break; // Non-compliant

40 }

41 }

42 }

43 }

44

45 loop_break:; // ...

46 }

See also

• JSF December 2005 [7]: AV Rule 189 The goto statement shall not be used.

• C++ Core Guidelines [10]: ES.76: Avoid goto.

95 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-goto

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• C++ Core Guidelines [10]: NR.6: Don’t: Place all cleanup actions at the end of a
function and goto exit.

Rule M6-6-1 (required, implementation, automated)
Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

See MISRA C++ 2008 [6]

Rule M6-6-2 (required, implementation, automated)
The goto statement shall jump to a label declared later in the same function
body.

See MISRA C++ 2008 [6]

Rule M6-6-3 (required, implementation, automated)
The continue statement shall only be used within a well-formed for loop.

See MISRA C++ 2008 [6]

6.7 Declaration

6.7.1 Specifiers

Rule A7-1-1 (required, implementation, automated)
Constexpr or const specifiers shall be used for immutable data declaration.

Rationale

If data is declared to be const or constexpr then its value can not be changed by
mistake. Also, such declaration can offer the compiler optimization opportunities.

Note that the constexpr specifier in an object declaration implies const as well.

Example
1 //% $Id: A7-1-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <limits>

4 void fn()

5 {

6 const std::int16_t x1 = 5; // Compliant

7 constexpr std::int16_t x2 = 5; // Compliant

8 std::int16_t x3 =

9 5; // Non-compliant - x3 is not modified but not declared as

10 // constant (const or constexpr)

11 }

96 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-goto-exit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-goto-exit

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See also

• C++ Core Guidelines [10]: ES.25: Declare objects const or constexpr unless you
want to modify its value later on.

Rule A7-1-2 (required, implementation, automated)
The constexpr specifier shall be used for values that can be determined at
compile time.

Rationale

The constexpr specifier declares that it is possible to evaluate the value of the function
or variable at compile time, e.g. integral type overflow/underflow, configuration options
or some physical constants. The compile-time evaluation can have no side effects so
it is more reliable than const expressions.

Note that the constexpr specifier in an object declaration implies const, and when used
in a function declaration it implies inline.

Note also that since 2014 C++ Language Standard constexpr specifier in member
function declaration no longer implicitly implies that the member function is const.

Example
1 //% $Id: A7-1-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 std::int32_t pow1(std::int32_t number)

4 {

5 return (number * number);

6 }

7 constexpr std::int32_t pow2(

8 std::int32_t number) // Possible compile-time computing

9 // because of constexpr specifier

10 {

11 return (number * number);

12 }

13 void fn()

14 {

15 constexpr std::int16_t i1 = 20; // Compliant, evaluated at compile-time

16 const std::int16_t i2 = 20; // Non-compliant, possible run-time evaluation

17 std::int32_t twoSquare =

18 pow1(2); // Non-compliant, possible run-time evaluation

19 const std::int32_t threeSquare =

20 pow1(3); // Non-compliant, possible run-time evaluation

21 // static_assert(threeSquare == 9, "pow1(3) did not succeed."); // Value

22 // can not be static_assert-ed

23 constexpr std::int32_t fiveSquare =

24 pow2(5); // Compliant, evaluated at compile time

25 static_assert(fiveSquare == 25,

26 "pow2(5) did not succeed."); // Compliant, constexpr

27 // evaluated at compile time

28 // constexpr std::int32_t int32Max =

97 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

29 // std::numeric_limits<std::int32_t>::max() + 1; //

30 // Compliant - compilation error due to

31 // compile-time evaluation (integer overflow)

32 }

33 class A

34 {

35 public:

36 static constexpr double pi = 3.14159265; // Compliant - value of PI can be

37 // determined in compile time

38

39 // constexpr double e = 2.71828182; // Non-compliant - constexprs need

40 // to be static members, compilation error

41

42 constexpr A() = default; // Compliant

43 };

See also

• C++ Core Guidelines [10]: Con.5: Use constexpr for values that can be computed
at compile time.

Rule M7-1-2 (required, implementation, automated)
A pointer or reference parameter in a function shall be declared as pointer to
const or reference to const if the corresponding object is not modified.

See MISRA C++ 2008 [6]

Rule A7-1-3 (required, implementation, automated)
CV-qualifiers shall be placed on the right hand side of the type that is a
typedef or a using name.

Rationale

If the type is a typedef or a using name, placing const or volatile qualifier on the left
hand side may result in confusion over what part of the type the qualification applies
to.

Example

1 // $Id: A7-1-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 using IntPtr = std::int32_t*;

4 using IntConstPtr = std::int32_t* const;

5 using ConstIntPtr = const std::int32_t*;

6 void fn(const std::uint8_t& input) // Compliant

7 {

8 std::int32_t value1 = 10;

9 std::int32_t value2 = 20;

10

11 const IntPtr ptr1 =

98 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

12 &value1; // Non-compliant - deduced type is std::int32_t*
13 // const, not const std::int32_t*
14

15 // ptr1 = &value2; // Compilation error, ptr1 is read-only variable

16

17 IntPtr const ptr2 =

18 &value1; // Compliant - deduced type is std::int32_t* const

19

20 // ptr2 = &value2; // Compilation error, ptr2 is read-only variable

21

22 IntConstPtr ptr3 = &value1; // Compliant - type is std::int32_t* const, no

23 // additional qualifiers needed

24

25 // ptr3 = &value2; // Compilation error, ptr3 is read-only variable

26

27 ConstIntPtr ptr4 = &value1; // Compliant - type is const std::int32_t*
28

29 const ConstIntPtr ptr5 = &value1; // Non-compliant, type is const

30 // std::int32_t* const, not const const

31 // std::int32_t*
32 ConstIntPtr const ptr6 =

33 &value1; // Compliant - type is const std::int32_t* const

34 }

See also

• HIC++ v4.0 [8]: 7.1.4 Place CV-qualifiers on the right hand side of the type they
apply to

Rule A7-1-4 (required, implementation, automated)
The register keyword shall not be used.

Rationale

This feature was deprecated in the 2011 C++ Language Standard [2] and may be
withdrawn in a later version.

Moreover, most compilers ignore register specifier and perform their own register
assignments.

Example
1 // $Id: A7-1-4.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 std::int32_t f1(register std::int16_t number) noexcept // Non-compliant

4 {

5 return ((number * number) + number);

6 }

7 void f2(std::int16_t number) noexcept // Compliant

8 {

9 register std::int8_t x = 10; // Non-compliant

10 std::int32_t result = f1(number); // Compliant

99 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-1-4-place-cv-qualifiers-on-the-right-hand-side-of-the-type-they-apply-to/
http://www.codingstandard.com/rule/7-1-4-place-cv-qualifiers-on-the-right-hand-side-of-the-type-they-apply-to/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

11 // ...

12 }

See also

• JSF December 2005 [7]: AV Rule 140 The register storage class specifier shall
not be used.

• HIC++ v4.0 [8]: 1.3.2 Do not use the register keyword

Rule A7-1-5 (required, implementation, automated)
The auto specifier shall not be used apart from following cases: (1) to declare
that a variable has the same type as return type of a function call, (2) to
declare that a variable has the same type as initializer of non-fundamental
type, (3) to declare parameters of a generic lambda expression, (4) to declare
a function template using trailing return type syntax.

Rationale

Using the auto specifier may lead to unexpected type deduction results, and therefore
to developers confusion. In most cases using the auto specifier makes the code less
readable.

Note that it is allowed to use the auto specifier in following cases:

1. When declaring a variable that is initialized with a function call or initializer of
non-fundamental type. Using the auto specifier for implicit type deduction in such
cases will ensure that no unexpected implicit conversions will occur. In such case,
explicit type declaration would not aid readability of the code.

2. When declaring a generic lambda expression with auto parameters

3. When declaring a function template using trailing return type syntax

Example

1 // $Id: A7-1-5.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 #include <vector>

4

5 class A

6 {

7 };

8 void f1() noexcept

9 {

10 auto x1 = 5; // Non-compliant - initializer is of fundamental type

11 auto x2 = 0.3F; // Non-compliant - initializer is of fundamental type

12 auto x3 = {8}; // Non-compliant - initializer is of fundamental type

13

14 std::vector<std::int32_t> v;

15 auto x4 = v.size(); // Compliant with case (1) - x4 is of size_t type that

16 // is returned from v.size() method

100 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/1-3-2-do-not-use-the-register-keyword/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

17

18 auto a = A{}; // Compliant with case (2)

19

20 auto lambda1 = []() -> std::uint16_t {

21 return 5U;

22 }; // Compliant with case (2) - lambda1 is of non-fundamental lambda

23 // expression type

24 auto x5 = lambda1(); // Compliant with case (1) - x5 is of

25 // std::uint16_t type

26 }

27 void f2() noexcept

28 {

29 auto lambda1 = [](auto x, auto y) -> decltype(x + y) {

30 return (x + y);

31 }; // Compliant with cases (2) and (3)

32 auto y1 = lambda1(5.0, 10); // Compliant with case (1)

33 }

34 template <typename T, typename U>

35 auto f3(T t, U u) noexcept -> decltype(t + u) // Compliant with case (4)

36 {

37 return (t + u);

38 }

39 template <typename T>

40 class B

41 {

42 public:

43 T fn(T t);

44 };

45 template <typename T>

46 auto B<T>::fn(T t) -> T // Compliant with case (4)

47 {

48 // ...

49 return t;

50 }

See also

• HIC++ v4.0 [8]: 7.1.8 Use auto id = expr when declaring a variable to have the
same type as its initializer function call.

• C++ Core Guidelines [10]: Use auto.

• Google C++ Style Guide [11]: Use auto to avoid type names that are noisy,
obvious, or unimportant.

Rule A7-1-6 (required, implementation, automated)
The typedef specifier shall not be used.

Rationale

The typedef specifier can not be easily used for defining alias templates. Also, the
typedef syntax makes the code less readable.

101 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-1-8-use-auto-id-expr-when-declaring-a-variable-to-have-the-same-type-as-its-initializer-function-call/
http://www.codingstandard.com/rule/7-1-8-use-auto-id-expr-when-declaring-a-variable-to-have-the-same-type-as-its-initializer-function-call/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-unclassified
https://google.github.io/styleguide/cppguide.html#auto
https://google.github.io/styleguide/cppguide.html#auto

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

For defining aliases, as well as template aliases, it is recommended to use the using
syntax instead of the typedef.

Note that active issues related to the using syntax are listed below, in the “See also”
section.

Example

1 // $Id: A7-1-6.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <type_traits>

4

5 typedef std::int32_t (*fPointer1)(std::int32_t); // Non-compliant

6

7 using fPointer2 = std::int32_t (*)(std::int32_t); // Compliant

8

9 // template<typename T>

10 // typedef std::int32_t (*fPointer3)(T); // Non-compliant - compilation error

11

12 template <typename T>

13 using fPointer3 = std::int32_t (*)(T); // Compliant

See also

• C++ Core Guidelines [10]: T.43: Prefer using over typedef for defining aliases

• C++ Standard Core Language Active Issues, Revision 96 [17]: 1554. Access and
alias templates.

• C++ Standard Core Language Defect Reports and Accepted Issues, Revision 96
[17]: 1558. Unused arguments in alias template specializations.

Rule A7-1-7 (required, implementation, automated)
Each identifier shall be declared on a separate line.

Rationale

Declaring an identifier on a separate line makes the identifier declaration easier to find
and the source code more readable. Also, combining objects, references and pointers
declarations on the same line may become confusing.

Exception

It is permitted to declare an identifier in initialization statement of a for loop.

Example

1 // $Id: A7-1-7.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 #include <vector>

4

5 typedef std::int32_t* ptr; // Compliant

6 typedef std::int32_t *pointer, value; // Non-compliant

102 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#t43-prefer-using-over-typedef-for-defining-aliases
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1554
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1554
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

7

8 void fn1() noexcept

9 {

10 std::int32_t x = 0; // Compliant

11 std::int32_t y = 7, *p1 = nullptr; // Non-compliant

12 std::int32_t const *p2, z = 1; // Non-compliant

13 }

14

15 void fn2()

16 {

17 std::vector<std::int32_t> v{1, 2, 3, 4, 5};

18 for (auto iter{v.begin()}, end{v.end()}; iter != end;

19 ++iter) // Compliant by exception

20 {

21 // ...

22 }

23 }

See also

• HIC++ v4.0 [8]: 7.1.1 Declare each identifier on a separate line in a separate
declaration.

• JSF December 2005 [7]: AV Rule 42 Each expression-statement will be on a
separate line.

• C++ Core Guidelines [10]: NL.20: Don’t place two statements on the same line.

Rule A7-1-8 (required, implementation, automated)
A non-type specifier shall be placed before a type specifier in a declaration.

Rationale

Placing a non-type specifier, i.e. typedef, friend, constexpr, register, static, extern,
thread_local, mutable, inline, virtual, explicit, before type specifiers makes the source
code more readable.

Example

1 // $Id: A7-1-8.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3

4 typedef std::int32_t int1; // Compliant

5 std::int32_t typedef int2; // Non-compliant

6

7 class C

8 {

9 public:

10 virtual inline void f1(); // Compliant

11 inline virtual void f2(); // Compliant

12 void virtual inline f3(); // Non-compliant

13 private:

103 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-1-1-declare-each-identifier-on-a-separate-line-in-a-separate-declaration/
http://www.codingstandard.com/rule/7-1-1-declare-each-identifier-on-a-separate-line-in-a-separate-declaration/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-stmt

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

14 std::int32_t mutable x; // Non-compliant

15 mutable std::int32_t y; // Compliant

16 };

See also

• HIC++ v4.0 [8]: 7.1.3 Do not place type specifiers before non-type specifiers in a
declaration.

6.7.2 Enumeration declaration

Rule A7-2-1 (required, implementation, automated)
An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

Rationale

It is unspecified behavior if the evaluation of an expression with enum underlying type
yields a value which does not correspond to one of the enumerators of the enumeration.

Additionally, other rules in this standard assume that objects of enum type only contain
values corresponding to the enumerators. This rule ensures the validity of these
assumptions.

One way of ensuring compliance when converting to an enumeration is to use a switch
statement.

Example

1 // $Id: A7-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 enum class E : std::uint8_t

4 {

5 Ok = 0,

6 Repeat,

7 Error

8 };

9 E convert1(std::uint8_t number) noexcept

10 {

11 E result = E::Ok; // Compliant

12 switch (number)

13 {

14 case 0:

15 {

16 result = E::Ok; // Compliant

17 break;

18 }

19 case 1:

20 {

21 result = E::Repeat; // Compliant

104 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-1-3-do-not-place-type-specifiers-before-non-type-specifiers-in-a-declaration/
http://www.codingstandard.com/rule/7-1-3-do-not-place-type-specifiers-before-non-type-specifiers-in-a-declaration/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

22 break;

23 }

24 case 2:

25 {

26 result = E::Error; // Compliant

27 break;

28 }

29 case 3:

30 {

31 constexpr std::int8_t val = 3;

32 result = static_cast<E>(val); // Non-compliant - value 3 does not

33 // correspond to any of E’s

34 // enumerators

35 break;

36 }

37 default:

38 {

39 result =

40 static_cast<E>(0); // Compliant - value 0 corresponds to E::Ok

41 break;

42 }

43 }

44 return result;

45 }

46 E convert2(std::uint8_t userInput) noexcept

47 {

48 E result = static_cast<E>(userInput); // Non-compliant - the range of

49 // userInput may not correspond to

50 // any of E’s enumerators

51 return result;

52 }

53 E convert3(std::uint8_t userInput) noexcept

54 {

55 E result = E::Error;

56 if (userInput < 3)

57 {

58 result = static_cast<E>(userInput); // Compliant - the range of

59 // userInput checked before casting

60 // it to E enumerator

61 }

62 return result;

63 }

See also

• MISRA C++ 2008 [6]: Rule 7-2-1 An expression with enum underlying type shall
only have values corresponding to the enumerators of the enumeration.

Rule A7-2-2 (required, implementation, automated)
Enumeration underlying base type shall be explicitly defined.

105 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

The enumeration underlying type is implementation-defined, with the only restriction
that the type must be able to represent the enumeration values. Although scoped enum
will implicitly define an underlying type of int, the underlying base type of enumeration
should always be explicitly defined with a type that will be large enough to store all
enumerators.

Example

1 // $Id: A7-2-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 enum class E1 // Non-compliant

4 {

5 E10,

6 E11,

7 E12

8 };

9 enum class E2 : std::uint8_t // Compliant

10 {

11 E20,

12 E21,

13 E22

14 };

15 enum E3 // Non-compliant

16 {

17 E30,

18 E31,

19 E32

20 };

21 enum E4 : std::uint8_t // Compliant - violating another rule

22 {

23 E40,

24 E41,

25 E42

26 };

27 enum class E5 : std::uint8_t // Non-compliant - will not compile

28 {

29 E50 = 255,

30 // E5_1, // E5_1 = 256 which is outside of range of underlying type

31 // std::uint8_t

32 // - compilation error

33 // E5_2 // E5_2 = 257 which is outside of range of underlying type

34 // std::uint8_t

35 // - compilation error

36 };

See also

• HIC++ v4.0 [8]: 7.2.1 Use an explicit enumeration base and ensure that it is large
enough to store all enumerators

106 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-2-1-use-an-explicit-enumeration-base-and-ensure-that-it-is-large-enough-to-store-all-enumerators/
http://www.codingstandard.com/rule/7-2-1-use-an-explicit-enumeration-base-and-ensure-that-it-is-large-enough-to-store-all-enumerators/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A7-2-3 (required, implementation, automated)
Enumerations shall be declared as scoped enum classes.

Rationale

If unscoped enumeration enum is declared in a global scope, then its values can
redeclare constants declared with the same identifier in the global scope. This may
lead to developer’s confusion.

Using enum-class as enumeration encloses its enumerators in its inner scope and
prevent redeclaring identifiers from outer scope.

Note that enum class enumerators disallow implicit conversion to numeric values.

Example

1 // $Id: A7-2-3.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3

4 enum E1 : std::int32_t // Non-compliant

5 {

6 E10,

7 E11,

8 E12

9 };

10

11 enum class E2 : std::int32_t // Compliant

12 {

13 E20,

14 E21,

15 E22

16 };

17

18 // static std::int32_t E1_0 = 5; // E1_0 symbol redeclaration, compilation

19 // error

20

21 static std::int32_t E20 = 5; // No redeclarations, no compilation error

22

23 extern void f1(std::int32_t number)

24 {

25 }

26

27 void f2()

28 {

29 f1(0);

30

31 f1(E11); // Implicit conversion from enum to std::int32_t type

32

33 // f1(E2::E2_1); // Implicit conversion not possible, compilation error

34

35 f1(static_cast<std::int32_t>(

36 E2::E21)); // Only explicit conversion allows to

107 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

37 // pass E2_1 value to f1() function

38 }

See also

• C++ Core Guidelines [10]: Enum.3: Prefer class enums over "‘plain"’ enums.

Rule A7-2-4 (required, implementation, automated)
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be
initialized.

Rationale

Explicit initialization of only some enumerators in an enumeration, and relying on
compiler to initialize the remaining ones, may lead to developer‘s confusion.

Example
1 //% $Id: A7-2-4.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 enum class Enum1 : std::uint32_t

4 {

5 One,

6 Two = 2, // Non-compliant

7 Three

8 };

9 enum class Enum2 : std::uint32_t // Compliant (none)

10 {

11 One,

12 Two,

13 Three

14 };

15 enum class Enum3 : std::uint32_t // Compliant (the first)

16 {

17 One = 1,

18 Two,

19 Three

20 };

21 enum class Enum4 : std::uint32_t // Compliant (all)

22 {

23 One = 1,

24 Two = 2,

25 Three = 3

26 };

See also

• MISRA C++ 2008 [6]: Rule 8-5-3 In an enumerator list, the = construct shall not
be used to explicitly initialize members other than the first, unless all items are
explicitly initialized.

• HIC++ v4.0 [8]: 7.2.2 Initialize none, the first only or all enumerators in an
enumeration.

108 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://www.codingstandard.com/rule/7-2-2-initialize-none-the-first-only-or-all-enumerators-in-an-enumeration/
http://www.codingstandard.com/rule/7-2-2-initialize-none-the-first-only-or-all-enumerators-in-an-enumeration/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.7.3 Namespaces

Rule M7-3-1 (required, implementation, automated)
The global namespace shall only contain main, namespace declarations and
extern "C" declarations.

See MISRA C++ 2008 [6]

Rule M7-3-2 (required, implementation, automated)
The identifier main shall not be used for a function other than the global
function main.

See MISRA C++ 2008 [6]

Rule M7-3-3 (required, implementation, automated)
There shall be no unnamed namespaces in header files.

See MISRA C++ 2008 [6]

Rule M7-3-4 (required, implementation, automated)
Using-directives shall not be used.

See MISRA C++ 2008 [6]

See: Using-directive [15] concerns an inclusion of specific namespace with all its types,
e.g. using namespace std.

Rule M7-3-5 (required, implementation, automated)
Multiple declarations for an identifier in the same namespace shall not
straddle a using-declaration for that identifier.

See MISRA C++ 2008 [6]

Rule M7-3-6 (required, implementation, automated)
Using-directives and using-declarations (excluding class scope or function
scope using-declarations) shall not be used in header files.

See MISRA C++ 2008 [6]

See: Using-declaration [15] concerns an inclusion of specific type, e.g. using
std::string.

6.7.4 The asm declaration

109 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://en.cppreference.com/w/cpp/language/namespace#Using-directives
http://en.cppreference.com/w/cpp/language/using_declaration

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A7-4-1 (required, implementation, automated)
The asm declaration shall not be used.

Rationale

Inline assembly code restricts the portability of the code.

Example
1 // $Id: A7-4-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 std::int32_t fn1(std::int32_t b) noexcept

4 {

5 std::int32_t ret = 0;

6 // ...

7 asm("pushq %%rax \n"

8 "movl %0, %%eax \n"

9 "addl %1, %%eax \n"

10 "movl %%eax, %0 \n"

11 "popq %%rax"

12 : "=r"(ret)

13 : "r"(b)); // Non-compliant

14 return ret;

15 }

16 std::int32_t fn2(std::int32_t b) noexcept

17 {

18 std::int32_t ret = 0;

19 // ...

20 ret += b; // Compliant - equivalent to asm(...) above

21 return ret;

22 }

See also

• HIC++ v4.0 [8]: 7.5.1 Do not use the asm declaration.

Rule M7-4-1 (required, implementation, non-automated)
All usage of assembler shall be documented.

See MISRA C++ 2008 [6]

Rule M7-4-2 (required, implementation, automated)
Assembler instructions shall only be introduced using the asm declaration.

See MISRA C++ 2008 [6]

Rule M7-4-3 (required, implementation, automated)
Assembly language shall be encapsulated and isolated.

See MISRA C++ 2008 [6]

110 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/7-5-the-asm-declaration/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.7.5 Linkage specification

Rule M7-5-1 (required, implementation, non-automated)
A function shall not return a reference or a pointer to an automatic variable
(including parameters), defined within the function.

See MISRA C++ 2008 [6]

Rule M7-5-2 (required, implementation, non-automated)
The address of an object with automatic storage shall not be assigned to
another object that may persist after the first object has ceased to exist.

See MISRA C++ 2008 [6]

Note: C++ specifies that binding a temporary object (e.g. automatic variable returned
from a function) to a reference to const prolongs the lifetime of the temporary to the
lifetime of the reference.

Note: Rule 7-5-2 concerns C++11 smart pointers, i.e. std::unique_ptr, std::shared_ptr
and std::weak_ptr, too.

Rule A7-5-1 (required, implementation, automated)
A function shall not return a reference or a pointer to a parameter that is
passed by reference to const.

Rationale

“[...] Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.6, 2.13, 2.13.5, 8.3.4, 12.2).” [C++14 Language Standard [3]]

Any attempt to dereferencing an object which outlived its scope will lead to undefined
behavior.

References to const bind to both lvalues and rvalues, so functions that accept
parameters passed by reference to const should expect temporary objects too.
Returning a pointer or a reference to such an object leads to undefined behavior on
accessing it.

Example
1 // $Id: A7-5-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 class A

4 {

5 public:

6 explicit A(std::uint8_t n) : number(n) {}

7 ~A() { number = 0U; }

8 // Implementation

9

10 private:

111 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

11 std::uint8_t number;

12 };

13 const A& fn1(const A& ref) noexcept // Non-compliant - the function returns a

14 // reference to const reference parameter

15 // which may bind to temporary objects.

16 // According to C++14 Language Standard, it

17 // is undefined whether a temporary object is introduced for const

18 // reference

19 // parameter

20 {

21 // ...

22 return ref;

23 }

24 const A& fn2(A& ref) noexcept // Compliant - non-const reference parameter does

25 // not bind to temporary objects, it is allowed

26 // that the function returns a reference to such

27 // a parameter

28 {

29 // ...

30 return ref;

31 }

32 const A* fn3(const A& ref) noexcept // Non-compliant - the function returns a

33 // pointer to const reference parameter

34 // which may bind to temporary objects.

35 // According to C++14 Language Standard, it

36 // is undefined whether a temporary object is introduced for const

37 // reference

38 // parameter

39 {

40 // ...

41 return &ref;

42 }

43 template <typename T>

44 T& fn4(T& v) // Compliant - the function will not bind to temporary objects

45 {

46 // ...

47 return v;

48 }

49 void f() noexcept

50 {

51 A a{5};

52 const A& ref1 = fn1(a); // fn1 called with an lvalue parameter from an

53 // outer scope, ref1 refers to valid object

54 const A& ref2 = fn2(a); // fn2 called with an lvalue parameter from an

55 // outer scope, ref2 refers to valid object

56 const A* ptr1 = fn3(a); // fn3 called with an lvalue parameter from an

57 // outer scope, ptr1 refers to valid object

58 const A& ref3 = fn4(a); // fn4 called with T = A, an lvalue parameter from

59 // an outer scope, ref3 refers to valid object

60

61 const A& ref4 = fn1(A{10}); // fn1 called with an rvalue parameter

112 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

62 // (temporary), ref3 refers to destroyed object

63 // A const& ref5 = fn2(A{10}); // Compilation

64 // error - invalid initialization of non-const

65 // reference

66 const A* ptr2 = fn3(A{15}); // fn3 called with an rvalue parameter

67 // (temporary), ptr2 refers to destroyted

68 // object

69 // const A& ref6 = fn4(A{20}); // Compilation error - invalid

70 // initialization of non-const reference

71 }

See also

• MISRA C++ 2008 [6]: A function shall not return a reference or a pointer to a
parameter that is passed by reference or const reference.

Rule A7-5-2 (required, implementation, automated)
Functions shall not call themselves, either directly or indirectly.

Rationale

As the stack space is limited resource, use of recursion may lead to stack overflow at
run-time. It also may limit the scalability and portability of the program.

Recursion can be replaced with loops, iterative algorithms or worklists.

Exception

Recursion in variadic template functions used to process template arguments does not
violate this rule, as variadic template arguments are evaluated at compile time and the
call depth is known.

Recursion of a constexpr function does not violate this rule, as it is evaluated at compile
time.

Example
1 // $Id: A7-5-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 static std::int32_t fn1(std::int32_t number);

4 static std::int32_t fn2(std::int32_t number);

5 static std::int32_t fn3(std::int32_t number);

6 static std::int32_t fn4(std::int32_t number);

7 std::int32_t fn1(std::int32_t number)

8 {

9 if (number > 1)

10 {

11 number = number * fn1(number - 1); // Non-compliant

12 }

13

14 return number;

15 }

16 std::int32_t fn2(std::int32_t number)

113 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

17 {

18 for (std::int32_t n = number; n > 1; --n) // Compliant

19 {

20 number = number * (n - 1);

21 }

22

23 return number;

24 }

25 std::int32_t fn3(std::int32_t number)

26 {

27 if (number > 1)

28 {

29 number = number * fn3(number - 1); // Non-compliant

30 }

31

32 return number;

33 }

34 std::int32_t fn4(std::int32_t number)

35 {

36 if (number == 1)

37 {

38 number = number * fn3(number - 1); // Non-compliant

39 }

40

41 return number;

42 }

43 template <typename T>

44 T fn5(T value)

45 {

46 return value;

47 }

48 template <typename T, typename... Args>

49 T fn5(T first, Args... args)

50 {

51 return first + fn5(args...); // Compliant by exception - all of the

52 // arguments are known during compile time

53 }

54 std::int32_t fn6() noexcept

55 {

56 std::int32_t sum = fn5<std::int32_t, std::uint8_t, float, double>(

57 10, 5, 2.5, 3.5); // An example call to variadic template function

58 // ...

59 return sum;

60 }

61 constexpr std::int32_t fn7(std::int32_t x, std::int8_t n)

62 {

63 if (n >= 0)

64 {

65 x += x;

66 return fn5(x, --n); // Compliant by exception - recursion evaluated at

67 // compile time

114 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

68 }

69 return x;

70 }

See also

• MISRA C++ 2008 [6]: Rule 7-5-4 Functions should not call themselves, either
directly or indirectly.

• JSF December 2005 [7]: AV Rule 119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not be allowed).

• HIC++ v4.0 [8]: 5.2.2 Ensure that functions do not call themselves, either directly
or indirectly.

6.8 Declarators

6.8.0 General

Rule M8-0-1 (required, implementation, automated)
An init-declarator-list or a member-declarator-list shall consist of a single
init-declarator or member-declarator respectively.

See MISRA C++ 2008 [6]

6.8.2 Ambiguity resolution

Rule A8-2-1 (required, implementation, automated)
When declaring function templates, the trailing return type syntax shall be
used if the return type depends on the type of parameters.

Rationale

Use of trailing return type syntax avoids a fully qualified return type of a function along
with the typename keyword.

Example

1 // $Id: A8-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 template <typename T>

4 class A

5 {

6 public:

7 using Type = std::int32_t;

8

9 Type f(T const&) noexcept;

115 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-2-2-ensure-that-functions-do-not-call-themselves-either-directly-or-indirectly/
http://www.codingstandard.com/rule/5-2-2-ensure-that-functions-do-not-call-themselves-either-directly-or-indirectly/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

10 Type g(T const&) noexcept;

11 };

12 template <typename T>

13 typename A<T>::Type A<T>::f(T const&) noexcept // Non-compliant

14 {

15 // Implementation

16 }

17 template <typename T>

18 auto A<T>::g(T const&) noexcept -> Type // Compliant

19 {

20 // Implementation

21 }

See also

• HIC++ v4.0 [8]: 7.1.7 Use a trailing return type in preference to type
disambiguation using typename.

6.8.3 Meaning of declarators

Rule M8-3-1 (required, implementation, automated)
Parameters in an overriding virtual function shall either use the same default
arguments as the function they override, or else shall not specify any default
arguments.

See MISRA C++ 2008 [6]

Note: Overriding non-virtual functions in a subclass is called function “hiding” or
“redefining”. It is prohibited by A10-2-1.

6.8.4 Function definitions

Rule A8-4-1 (required, implementation, automated)
Functions shall not be defined using the ellipsis notation.

Rationale

Passing arguments via an ellipsis bypasses the type checking performed by the
compiler. Additionally, passing an argument with non-POD class type leads to
undefined behavior.

Variadic templates offer a type-safe alternative for ellipsis notation. If use of a
variadic template is not possible, function overloading or function call chaining can
be considered.

Example
1 // $Id: A8-4-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

116 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/7-1-7-use-a-trailing-return-type-in-preference-to-type-disambiguation-using-typename/
http://www.codingstandard.com/rule/7-1-7-use-a-trailing-return-type-in-preference-to-type-disambiguation-using-typename/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2

3 void print1(char* format, ...) // Non-compliant - variadic arguments are used

4 {

5 // ...

6 }

7

8 template <typename First, typename... Rest>

9 void print2(const First& first, const Rest&... args) // Compliant

10 {

11 // ...

12 }

See also

• MISRA C++ 2008 [6]: Rule 8-4-1 Functions shall not be defined using the ellipsis
notation.

• HIC++ v4.0 [8]: 14.1.1 Use variadic templates rather than an ellipsis.

• C++ Core Guidelines [10]: Type.8: Avoid reading from varargs or passing vararg
arguments. Prefer variadic template parameters instead.

Rule M8-4-2 (required, implementation, automated)
The identifiers used for the parameters in a re-declaration of a function shall
be identical to those in the declaration.

See MISRA C++ 2008 [6]

Rule A8-4-2 (required, implementation, automated)
All exit paths from a function with non-void return type shall have an explicit
return statement with an expression.

Rationale

In a function with non-void return type, return expression gives the value that the
function returns. The absence of a return with an expression leads to undefined
behavior (and the compiler may not give an error).

Exception

A function may additionally exit due to exception handling (i.e. a throw statement).

Example
1 // $Id: A8-4-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 std::int32_t f1() noexcept // Non-compliant

5 {

6 }

7 std::int32_t f2(std::int32_t x) noexcept(false)

8 {

117 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/14-1-template-declarations/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

9 if (x > 100)

10 {

11 throw std::logic_error("Logic Error"); // Compliant by exception

12 }

13

14 return x; // Compliant

15 }

16 std::int32_t f3(std::int32_t x, std::int32_t y)

17 {

18 if (x > 100 || y > 100)

19 {

20 throw std::logic_error("Logic Error"); // Compliant by exception

21 }

22 if (y > x)

23 {

24 return (y - x); // Compliant

25 }

26 return (x - y); // Compliant

27 }

See also

• MISRA C++ 2008 [6]: Rule 8-4-3 All exit paths from a function with non-void
return type shall have an explicit return statement with an expression.

• SEI CERT C++ [9]: MSC52-CPP. Value-returning functions must return a value
from all exit paths.

Rule M8-4-4 (required, implementation, automated)
A function identifier shall either be used to call the function or it shall be
preceded by &.

See MISRA C++ 2008 [6]

6.8.5 Initilizers

Rule M8-5-1 (required, implementation, automated)
All variables shall have a defined value before they are used.

See MISRA C++ 2008 [6]

Rule A8-5-1 (required, implementation, automated)
In an initialization list, the order of initialization shall be following: (1) virtual
base classes in depth and left to right order of the inheritance graph, (2)
direct base classes in left to right order of inheritance list, (3) non-static data
members in the order they were declared in the class definition.

118 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/MSC52-CPP.+Value-returning+functions+must+return+a+value+from+all+exit+paths
https://www.securecoding.cert.org/confluence/display/cplusplus/MSC52-CPP.+Value-returning+functions+must+return+a+value+from+all+exit+paths

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

To avoid confusion and possible use of uninitialized data members, it is recommended
that the initialization list matches the actual initialization order.

Regardless of the order of member initializers in a initialization list, the order of
initialization is always:

• Virtual base classes in depth and left to right order of the inheritance graph.

• Direct non-virtual base classes in left to right order of inheritance list.

• Non-static member data in order of declaration in the class definition.

Note that “The order of derivation is relevant only to determine the order of default
initialization by constructors and cleanup by destructors.” [C++14 Language Standard
[3]]

Example
1 // $Id: A8-5-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 class A

5 {

6 };

7 class B

8 {

9 };

10 class C : public virtual B, public A

11 {

12 public:

13 C() : B(), A(), s() {} // Compliant

14

15 // C() : A(), B() { } // Non-compliant - incorrect order of initialization

16

17 private:

18 std::string s;

19 };

20 class D

21 {

22 };

23 class E

24 {

25 };

26 class F : public virtual A, public B, public virtual D, public E

27 {

28 public:

29 F() : A(), D(), B(), E(), number1(0), number2(0U) {} // Compliant

30 F(F const& oth)

31 : B(), E(), A(), D(), number1(oth.number1), number2(oth.number2)

32 {

33 } // Non-compliant - incorrect

34 // order of initialization

119 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

35

36 private:

37 std::int32_t number1;

38 std::uint8_t number2;

39 };

See also

• HIC++ v4.0 [8]:12.4.4 Write members in an initialization list in the order in which
they are declared

Rule M8-5-2 (required, implementation, automated)
Braces shall be used to indicate and match the structure in the non-zero
initialization of arrays and structures.

See MISRA C++ 2008 [6]

Rule A8-5-2 (required, implementation, automated)
Braced-initialization {}, without equals sign, shall be used for variable
initialization.

Rationale

Braced-initialization using {} braces is simpler and less ambiguous than other forms
of initialization. It is also safer, because it does not allow narrowing conversions for
numeric values, and it is immune to C++’s most vexing parse.

The use of an equals sign for initialization misleads into thinking that an assignment is
taking place, even though it is not. For built-in types like int, the difference is academic,
but for user-defined types, it is important to explicitly distinguish initialization from
assignment, because different function calls are involved.

Note that most vexing parse is a form of syntactic ambiguity resolution in C++, e.g.
“Class c()” could be interpreted either as a variable definition of class “Class” or a
function declaration which returns an object of type “Class”.

Note that in order to avoid grammar ambiguities, it is highly recommended to use only
braced-initialization {} within templates.

Exception

If a class declares both a constructor taking std::initializer_list argument and a
constructor which invocation will be ignored in favor of std::initializer_list constructor,
this rule is not violated by calling a constructor using () parentheses.

Example

1 // $Id: A8-5-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 #include <initializer_list>

4 void f1() noexcept

120 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-4-4-write-members-in-an-initialization-list-in-the-order-in-which-they-are-declared/
http://www.codingstandard.com/rule/12-4-4-write-members-in-an-initialization-list-in-the-order-in-which-they-are-declared/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 {

6 std::int32_t x1 =

7 7.9; // Non-compliant - x1 becomes 7 without compilation error

8 // std::int32_t y {7.9}; // Compliant - compilation error, narrowing

9 std::int8_t x2{50}; // Compliant

10 std::int8_t x3 = {50}; // Non-compliant - std::int8_t x3 {50} is equivalent

11 // and more readable

12 std::int8_t x4 =

13 1.0; // Non-compliant - implicit conversion from double to std::int8_t

14 std::int8_t x5 = 300; // Non-compliant - narrowing occurs implicitly

15 std::int8_t x6(x5); // Non-compliant

16 }

17 class A

18 {

19 public:

20 A(std::int32_t first, std::int32_t second) : x{first}, y{second} {}

21

22 private:

23 std::int32_t x;

24 std::int32_t y;

25 };

26 struct B

27 {

28 std::int16_t x;

29 std::int16_t y;

30 };

31 class C

32 {

33 public:

34 C(std::int32_t first, std::int32_t second) : x{first}, y{second} {}

35 C(std::initializer_list<std::int32_t> list) : x{0}, y{0} {}

36

37 private:

38 std::int32_t x;

39 std::int32_t y;

40 };

41 void f2() noexcept

42 {

43 A a1{1, 5}; // Compliant - calls constructor of class A

44 A a2 = {1, 5}; // Non-compliant - calls a default constructor of class A

45 // and not copy constructor or assignment operator.

46 A a3(1, 5); // Non-compliant

47 B b1{5, 0}; // Compliant - struct members initialization

48 C c1{2, 2}; // Compliant - C(std::initializer_list<std::int32_t>)

49 // constructor is

50 // called

51 C c2(2, 2); // Compliant by exception - this is the only way to call

52 // C(std::int32_t, std::int32_t) constructor

53 C c3{{}}; // Compliant - C(std::initializer_list<std::int32_t>) constructor

54 // is

55 // called with an empty initializer_list

121 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

56 C c4({2, 2}); // Compliant by exception -

57 // C(std::initializer_list<std::int32_t>)

58 // constructor is called

59 };

60 template <typename T, typename U>

61 void f1(T t, U u) noexcept(false)

62 {

63 std::int32_t x = 0;

64 T v1(x); // Non-compliant

65 T v2{x}; // Compliant - v2 is a variable

66 // auto y = T(u); // Non-compliant - is it construction or cast?

67 // Compilation error

68 };

69 void f3() noexcept

70 {

71 f1(0, "abcd"); // Compile-time error, cast from const char* to int

72 }

See also

• C++ Core Guidelines [10]: ES.23 Prefer the {} initializer syntax.

• C++ Core Guidelines [10]: T.68: Use {} rather than () within templates to avoid
ambiguities.

• Effective Modern C++ [12]: Item 7. Distinguish between () and {} when creating
objects.

Rule A8-5-3 (required, implementation, automated)
A variable of type auto shall not be initialized using {} or ={} braced-
initialization.

Rationale

If an initializer of a variable of type auto is enclosed in braces, then the result of type
deduction may lead to developer confusion, as the variable initialized using {} or ={} will
always be of std::initializer_list type.

Note that some compilers, e.g. GCC or Clang, can implement this differently -
initializing a variable of type auto using {} will deduce an integer type, and initializing
using ={} will deduce a std::initializer_list type. This is desirable type deduction which
will be introduced into the C++ Language Standard with C++17.

Example

1 // $Id: A8-5-3.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 #include <initializer_list>

4 void fn() noexcept

5 {

6 auto x1(10); // Compliant - the auto-declared variable is of type int, but

7 // not compliant with A8-5-2.

122 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-list
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namert-castat68-use--rather-than--within-templates-to-avoid-ambiguities
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namert-castat68-use--rather-than--within-templates-to-avoid-ambiguities

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

8 auto x2{10}; // Non-compliant - according to C++14 standard the

9 // auto-declared variable is of type std::initializer_list.

10 // However, it can behave differently on different compilers.

11 auto x3 = 10; // Compliant - the auto-declared variable is of type int, but

12 // non-compliant with A8-5-2.

13 auto x4 = {10}; // Non-compliant - the auto-declared variable is of type

14 // std::initializer_list, non-compliant with A8-5-2.

15 std::int8_t x5{10}; // Compliant

16 }

See also

• Effective Modern C++ [12]: Item 2. Understand auto type deduction.

• Effective Modern C++ [12]: Item 7. Distinguish between () and {} when creating
objects.

Rule A8-5-4 (advisory, implementation, non-automated)
A constructor taking parameter of type std::initializer_list shall only be
defined in classes that internally store a collection of objects.

Rationale

If an object is initialized using {} braced-initialization, the compiler strongly prefers
constructor taking parameter of type std::initializer_list to other constructors. Usage
of constructors taking parameter of type std::initializer_list needs to be limited in order
to avoid implicit calls to wrongly deduced constructor candidate of a class.

A class that internally stores a collection of objects is the case in which constructors
taking parameter of type std::initializer_list are reasonable, allowing readable
initialization of a class with a list of its elements.

Example
1 // $Id: A8-5-4.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <algorithm>

3 #include <cstdint>

4 #include <initializer_list>

5 #include <vector>

6 class A

7 {

8 public:

9 A() : x(0), y(0) {}

10 A(std::int32_t first, std::int32_t second) : x(first), y(second) {}

11 A(std::initializer_list<std::int32_t> list)

12 : x(0), y(0) // Non-compliant - class A does not store a collection

13 // of objects

14 {

15 // ...

16 }

17

18 private:

123 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

19 std::int32_t x;

20 std::int32_t y;

21 };

22 class B

23 {

24 public:

25 B() : collection() {}

26 B(std::int32_t size, std::int32_t value) : collection(size, value) {}

27 B(std::initializer_list<std::int32_t> list)

28 : collection(

29 list) // Compliant - class B stores a collection of objects

30 {

31 }

32

33 private:

34 std::vector<std::int32_t> collection;

35 };

36 class C

37 {

38 public:

39 C() : array{0} {}

40 C(std::initializer_list<std::int32_t> list)

41 : array{0} // Compliant - class C stores a collection of objects

42 {

43 std::copy(list.begin(), list.end(), array);

44 }

45

46 private:

47 static constexpr std::int32_t size = 100;

48 std::int32_t array[size];

49 };

50 class D : public C

51 {

52 public:

53 D() : C() {}

54 D(std::initializer_list<std::int32_t> list)

55 : C{list} // Compliant - class D inherits a collection of objects

56 // from class C

57 {

58 }

59 };

60 class E

61 {

62 public:

63 E() : container() {}

64 E(std::initializer_list<std::int32_t> list)

65 : container{list} // Compliant - class E stores class C which

66 // stores a collection of objects

67 {

68 }

69

124 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

70 private:

71 C container;

72 };

73 void f1() noexcept

74 {

75 A a1{}; // Calls A::A()

76 A a2{{}}; // Calls A::A(std::initializer_list<std::int32_t>)

77 A a3{0, 1}; // Calls A::A(std::initializer_list<std::int32_t>)

78 A a4(0, 1); // Calls A::A(std::int32_t, std::int32_t)

79 }

80 void f2() noexcept

81 {

82 B b1{}; // Calls B::B()

83 B b2{{}}; // Calls B::B(std::initializer_list<std::int32_t>)

84 B b3{1, 2}; // Calls B::B(std::initializer_list<std::int32_t>)

85 B b4(10, 0); // Calls B::B(std::int32_t, std::int32_t)

86 }

87 void f3() noexcept

88 {

89 C c1{}; // Calls C::C()

90 C c2{{}}; // Calls C::C(std::initializer_list<std::int32_t>)

91 C c3{1, 2, 3}; // Calls C::C(std::initializer_list<std::int32_t>)

92 }

93 void f4() noexcept

94 {

95 D d1{}; // Calls D::D()

96 D d2{{}}; // Calls D::D(std::initializer_list<std::int32_t>)

97 D d3{1, 2, 3}; // Calls D::D(std::initializer_list<std::int32_t>)

98 }

99 void f5() noexcept

100 {

101 E e1{}; // Calls E::E()

102 E e2{{}}; // Calls E::E(std::initializer_list<std::int32_t>)

103 E e3{1, 2, 3}; // Calls E::E(std::initializer_list<std::int32_t>)

104 }

See also

• Effective Modern C++ [12]: Item 7. Distinguish between () and {} when creating
objects.

6.9 Classes

6.9.3 Member function

Rule M9-3-1 (required, implementation, automated)
Const member functions shall not return non-const pointers or references
to class-data.

125 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See MISRA C++ 2008 [6]

Note: This rule applies to smart pointers, too.

Note: “The class-data for a class is all non-static member data and any resources
acquired in the constructor or released in the destructor.” [MISRA C++ 2008 [6]]

Rule A9-3-1 (required, implementation, automated)
Member functions shall not return non-const “raw” pointers or references to
private or protected data owned by the class.

Rationale

By implementing class interfaces with member functions the implementation retains
more control over how the object state can be modified and helps to allow a class to be
maintained without affecting clients. Returning a handle to data that is owned by the
class allows for clients to modify the state of the object without using an interface.

Note that this rule applies to data that are owned by the class (i.e. are class-data). Non-
const handles to objects that are shared between different classes may be returned.

See: Ownership.

Exception

Classes that mimic smart pointers and containers do not violate this rule.

Example
1 // $Id: A9-3-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4 #include <utility>

5 class A

6 {

7 public:

8 explicit A(std::int32_t number) : x(number) {}

9 // Implementation

10 std::int32_t&

11 getX() noexcept // Non-compliant - x is a resource owned by the A class

12 {

13 return x;

14 }

15

16 private:

17 std::int32_t x;

18 };

19 void fn1() noexcept

20 {

21 A a{10};

22 std::int32_t& number = a.getX();

23 number = 15; // External modification of private class data

24 }

126 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

25 class B

26 {

27 public:

28 explicit B(std::shared_ptr<std::int32_t> ptr) : sharedptr(std::move(ptr)) {}

29 // Implementation

30 std::shared_ptr<std::int32_t> getSharedPtr() const

31 noexcept // Compliant - sharedptr is a variable being shared between

32 // instances

33 {

34 return sharedptr;

35 }

36

37 private:

38 std::shared_ptr<std::int32_t> sharedptr;

39 };

40 void fn2() noexcept

41 {

42 std::shared_ptr<std::int32_t> ptr = std::make_shared<std::int32_t>(10);

43 B b1{ptr};

44 B b2{ptr};

45 *ptr = 50; // External modification of ptr which shared between b1 and b2

46 // instances

47 auto shared = b1.getSharedPtr();

48 *shared = 100; // External modification of ptr which shared between b1 and

49 // b2 instances

50 }

51 class C

52 {

53 public:

54 explicit C(std::int32_t number)

55 : ownedptr{std::make_unique<std::int32_t>(number)}

56 {

57 }

58 // Implementation

59 const std::unique_ptr<std::int32_t>& getOwnedPtr() const

60 noexcept // Non-compliant - only unique_ptr is const, the object that

61 // it is pointing to is modifiable

62 {

63 return ownedptr;

64 }

65 const std::int32_t& getData() const noexcept // Compliant

66 {

67 return *ownedptr;

68 }

69

70 private:

71 std::unique_ptr<std::int32_t> ownedptr;

72 };

73 void fn3() noexcept

74 {

75 C c{10};

127 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

76 const std::int32_t& data = c.getData();

77 // data = 20; // Can not modify data, it is a const reference

78 const std::unique_ptr<std::int32_t>& ptr = c.getOwnedPtr();

79 *ptr = 20; // Internal data of class C modified

80 }

See also

• MISRA C++ 2008 [6]: Rule 9-3-2 Member functions shall not return non-const
handles to class-data.

Rule M9-3-3 (required, implementation, automated)
If a member function can be made static then it shall be made static,
otherwise if it can be made const then it shall be made const.

See MISRA C++ 2008 [6]

Note: Static methods can only modify static members of a class, they are not able to
access data of a class instance.

Note: Const methods can only modify static members of a class or mutable-declared
members of a class instance.

6.9.5 Unions

Rule M9-5-1 (required, implementation, automated)
Unions shall not be used.

See MISRA C++ 2008 [6]

6.9.6 Bit-fields

Rule M9-6-1 (required, implementation, non-automated)
When the absolute positioning of bits representing a bit-field is required,
then the behavior and packing of bit-fields shall be documented.

See MISRA C++ 2008 [6]

Rule A9-6-1 (required, implementation, automated)
Bit-fields shall be either unsigned integral, or enumeration (with underlying
type of unsigned integral type).

Rationale

Explicitly declaring a bit-field unsigned prevents unexpected sign extension, overflows
and implementation-defined behavior.

128 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Note that if a bit-field has enumeration type, then the enumeration base needs to be
declared of an explicitly unsigned type.

Example

1 // $Id: A9-6-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 enum class E1 : std::uint8_t

4 {

5 E11,

6 E12,

7 E13

8 };

9 enum class E2 : std::int16_t

10 {

11 E21,

12 E22,

13 E23

14 };

15 enum class E3

16 {

17 E31,

18 E32,

19 E33

20 };

21 enum E4

22 {

23 E41,

24 E42,

25 E43

26 };

27 class C

28 {

29 public:

30 std::int32_t a : 2; // Non-compliant - signed integral type

31 std::uint8_t b : 2U; // Compliant

32 bool c : 1; // Non-compliant - it is implementation-defined whether bool is

33 // signed or unsigned

34 char d : 2; // Non-compliant

35 wchar_t e : 2; // Non-compliant

36 E1 f1 : 2; // Compliant

37 E2 f2 : 2; // Non-compliant - E2 enum class underlying type is signed

38 // int

39 E3 f3 : 2; // Non-compliant - E3 enum class does not explicitly define

40 // underlying type

41 E4 f4 : 2; // Non-compliant - E4 enum does not explicitly define underlying

42 // type

43 };

44 void fn() noexcept

45 {

46 C c;

47 c.f1 = E1::E11;

129 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

48 }

See also

• JSF December 2005 [7]: AV Rule 154 Bit-fields shall have explicitly unsigned
integral or enumeration types only.

• HIC++ v4.0 [8]: 9.2.1 Declare bit-fields with an explicitly unsigned integral or
enumeration type.

6.10 Derived Classes

6.10.1 Multiple base Classes

Rule A10-1-1 (required, implementation, automated)
Class shall not be derived from more than one base class which is not an
interface class.

Rationale

Multiple inheritance exposes derived class to multiple implementations. This makes
the code more difficult to maintain.

See: Diamond-Problem, Interface-Class

Example

1 // $Id: A10-1-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 class A

4 {

5 public:

6 void f1() noexcept(false) {}

7

8 private:

9 std::int32_t x{0};

10 std::int32_t y{0};

11 };

12 class B

13 {

14 public:

15 void f2() noexcept(false) {}

16

17 private:

18 std::int32_t x{0};

19 };

20 class C : public A,

21 public B // Non-compliant - A and B are both not interface classes

22 {

23 };

130 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/9-2-bit-fields/
http://www.codingstandard.com/section/9-2-bit-fields/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 class D

25 {

26 public:

27 virtual ~D() = 0;

28 virtual void f3() noexcept = 0;

29 virtual void f4() noexcept = 0;

30 };

31 class E

32 {

33 public:

34 static constexpr std::int32_t value{10};

35

36 virtual ~E() = 0;

37 virtual void f5() noexcept = 0;

38 };

39 class F : public A,

40 public B,

41 public D,

42 public E // Non-compliant - A and B are both not interface classes

43 {

44 };

45 class G : public A,

46 public D,

47 public E // Compliant - D and E are interface classes

48 {

49 };

See also

• JSF December 2005 [7]: AV Rule 88 Multiple inheritance shall only be allowed in
the following restricted form: n interfaces plus m private implementations, plus at
most one protected implementation.

• HIC++ v4.0 [8]: 10.3.1 Ensure that a derived class has at most one base class
which is not an interface class.

• C++ Core Guidelines [10]: C.135: Use multiple inheritance to represent multiple
distinct interfaces.

Rule M10-1-1 (advisory, implementation, automated)
Classes should not be derived from virtual bases.

See MISRA C++ 2008 [6]

Rule M10-1-2 (required, implementation, automated)
A base class shall only be declared virtual if it is used in a diamond hierarchy.

See MISRA C++ 2008 [6]

131 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/10-3-abstract-classes/
http://www.codingstandard.com/section/10-3-abstract-classes/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-mi-interfaceac135-use-multiple-inheritance-to-represent-multiple-distinct-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-mi-interfaceac135-use-multiple-inheritance-to-represent-multiple-distinct-interfaces

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M10-1-3 (required, implementation, automated)
An accessible base class shall not be both virtual and non-virtual in the same
hierarchy.

See MISRA C++ 2008 [6]

6.10.2 Member name lookup

Rule M10-2-1 (advisory, implementation, automated)
All accessible entity names within a multiple inheritance hierarchy should be
unique.

See MISRA C++ 2008 [6]

Rule A10-2-1 (required, implementation, automated)
Non-virtual member functions shall not be redefined in derived classes.

Rationale

A non-virtual member function specifies an invariant over the hierarchy. It cannot be
overridden in derived classes, but it can be hidden by a derived class member (data or
function) with the same identifier. The effect of this hiding is to defeat polymorphism
by causing an object to behave differently depending on which interface is used to
manipulate it, resulting in unnecessary complexity and error.

Example
1 // $Id: A10-2-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual ~A() = default;

6 void f() noexcept {}

7 virtual void g() noexcept {}

8 };

9

10 class B : public A

11 {

12 public:

13 void

14 f() noexcept // Non-compliant - f() function from A class hidden by B class

15 {

16 }

17 void g() noexcept override // Compliant - g() function from A class

18 // overridden by B class

19 {

20 }

21 };

132 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

22 void fn1(A& object) noexcept

23 {

24 object.f(); // Calls f() function from A

25 object.g(); // Calls g() function from B

26 }

27 void fn2() noexcept

28 {

29 B b;

30 fn1(b);

31 }

See also

• JSF December 2005 [7]: AV Rule 94 An inherited nonvirtual function shall not be
redefined in a derived class.

• C++ Core Guidelines [10]: ES.12: Do not reuse names in nested scopes.

6.10.3 Virtual functions

Rule A10-3-1 (required, implementation, automated)
Virtual function declaration shall contain exactly one of the three specifiers:
(1) virtual, (2) override, (3) final.

Rationale

Specifying more than one of these three specifiers along with virtual function
declaration is redundant and a potential source of errors.

It is recommended to use the virtual specifier only for new virtual function declaration,
the override specifier for overrider declaration, and the final specifier for final overrider
declaration.

Note that this applies to virtual destructors and virtual operators, too.

Example
1 // $Id: A10-3-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual ~A() {} // Compliant

6 virtual void f() noexcept = 0; // Compliant

7 virtual void g() noexcept final = 0; // Non-compliant - virtual final pure

8 // function is redundant

9 virtual void

10 h() noexcept final // Non-compliant - function is virtual and final

11 {

12 }

13 virtual void k() noexcept // Compliant

14 {

133 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-reuse

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

15 }

16 virtual void j() noexcept {}

17 virtual void m() noexcept // Compliant

18 {

19 }

20 virtual void z() noexcept // Compliant

21 {

22 }

23 virtual A& operator+=(A const& rhs) noexcept // Compliant

24 {

25 // ...

26 return *this;

27 }

28 };

29 class B : public A

30 {

31 public:

32 ~B() override {} // Compliant

33 virtual void f() noexcept override // Non-compliant - function is specified

34 // with virtual and override

35 {

36 }

37 void k() noexcept override

38 final // Non-compliant - function is specified with override and final

39 {

40 }

41 virtual void m() noexcept // Compliant - violates A10-3-2

42 {

43 }

44 void z() noexcept override // Compliant

45 {

46 }

47 void j() noexcept // Non-compliant - virtual function but not marked as

48 // overrider

49 {

50 }

51 A& operator+=(A const& rhs) noexcept override // Compliant - to override

52 // the operator correctly,

53 // its signature needs to be

54 // the same as in the base

55 // class

56 {

57 // ...

58 return *this;

59 }

60 };

See also

• C++ Core Guidelines [10]: C.128: Virtual functions should specify exactly one of
virtual, override, or final.

134 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A10-3-2 (required, implementation, automated)
Each overriding virtual function shall be declared with the override or final
specifier.

Rationale

Explicit use of the override or final specifier enables the compiler to catch mismatch of
types and names between base and derived classes virtual functions.

Note that this rule applies to virtual destructor overriders, too.

Also, note that this rule applies to a pure virtual function which overrides another pure
virtual function.

Example

1 // $Id: A10-3-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual ~A() {}

6 virtual void f() noexcept = 0;

7 virtual void g() noexcept {}

8 virtual void z() noexcept {}

9 virtual A& operator+=(A const& oth) = 0;

10 };

11 class B : public A

12 {

13 public:

14 ~B() override {} // Compliant

15 void f() noexcept // Non-compliant

16 {

17 }

18 virtual void g() noexcept // Non-compliant

19 {

20 }

21 void z() noexcept override // Compliant

22 {

23 }

24 B& operator+=(A const& oth) override // Compliant

25 {

26 return *this;

27 }

28 };

29 class C : public A

30 {

31 public:

32 ~C() {} // Non-compliant

33 void f() noexcept override // Compliant

34 {

35 }

36 void g() noexcept override // Compliant

135 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

37 {

38 }

39 void z() noexcept override // Compliant

40 {

41 }

42 C& operator+=(A const& oth) // Non-compliant

43 {

44 return *this;

45 }

46 };

See also

• HIC++ v4.0 [8]: 10.2.1 Use the override special identifier when overriding a virtual
function

• C++ Core Guidelines [10]: C.128: Virtual functions should specify exactly one of
virtual, override, or final.

Rule A10-3-3 (required, implementation, automated)
Virtual functions shall not be introduced in a final class.

Rationale

Declaring a class as final explicitly specifies that the class cannot be inherited.
Declaring a virtual function inside a class specifies that the function can be overriden
in the inherited class, which is inconsistent.

Example

1 // $Id: A10-3-3.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual ~A() = default;

6 virtual void f() noexcept = 0;

7 virtual void g() noexcept {}

8 };

9 class B final : public A

10 {

11 public:

12 void f() noexcept final // Compliant

13 {

14 }

15 void g() noexcept override // Non-compliant

16 {

17 }

18 virtual void h() noexcept = 0; // Non-compliant

19 virtual void z() noexcept // Non-compliant

20 {

21 }

22 };

136 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/10-2-1-use-the-override-special-identifier-when-overriding-a-virtual-function/
http://www.codingstandard.com/rule/10-2-1-use-the-override-special-identifier-when-overriding-a-virtual-function/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See also

• HIC++ v4.0 [8]: 9.1.5 Do not introduce virtual functions in a final class.

Rule A10-3-5 (required, implementation, automated)
A user-defined assignment operator shall not be virtual.

Rationale

If an overloaded operator is declared virtual in a base class A, then in its subclasses
B and C identical arguments list needs to be provided for the overriders. This allows
to call an assignment operator of class B that takes an argument of type C which may
lead to undefined behavior.

Note that this rule applies to all assignment operators, as well to copy and move
assignment operators.

Example

1 // $Id: A10-3-4.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 class A

3 {

4 public:

5 virtual A& operator=(A const& oth) = 0; // Non-compliant

6 virtual A& operator+=(A const& rhs) = 0; // Non-compliant

7 };

8 class B : public A

9 {

10 public:

11 B& operator=(A const& oth) override // It needs to take an argument of type

12 // A& in order to override

13 {

14 return *this;

15 }

16 B& operator+=(A const& oth) override // It needs to take an argument of

17 // type A& in order to override

18 {

19 return *this;

20 }

21 B& operator-=(B const& oth) // Compliant

22 {

23 return *this;

24 }

25 };

26 class C : public A

27 {

28 public:

29 C& operator=(A const& oth) override // It needs to take an argument of type

30 // A& in order to override

31 {

32 return *this;

33 }

137 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/9-1-5-do-not-introduce-virtual-functions-in-a-final-class/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

34 C& operator+=(A const& oth) override // It needs to take an argument of

35 // type A& in order to override

36 {

37 return *this;

38 }

39 C& operator-=(C const& oth) // Compliant

40 {

41 return *this;

42 }

43 };

44 // class D : public A

45 //{

46 // public:

47 // D& operator=(D const& oth) override // Compile time error - this method

48 // does not override because of different

49 // signature

50 // {

51 // return *this;

52 // }

53 // D& operator+=(D const& oth) override // Compile time error - this method

54 // does not override because of different

55 // signature

56 // {

57 // return *this;

58 // }

59 //};

60 void fn() noexcept

61 {

62 B b;

63 C c;

64 b = c; // Calls B::operator= and accepts an argument of type C

65 b += c; // Calls B::operator+= and accepts an argument of type C

66 c = b; // Calls C::operator= and accepts an argument of type B

67 c += b; // Calls C::operator+= and accepts an argument of type B

68 // b -= c; // Compilation error, because of types mismatch. Expected

69 // behavior

70 // c -= b; // Compilation error, because of types mismatch. Expected

71 // behavior

72

73 B b2;

74 C c2;

75 b -= b2;

76 c -= c2;

77 }

See also

• none

138 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M10-3-3 (required, implementation, automated)
A virtual function shall only be overridden by a pure virtual function if it is
itself declared as pure virtual.

See MISRA C++ 2008 [6]

See: A10-3-2 for pure virtual function overriders declaration.

6.11 Member access control

6.11.0 General

Rule M11-0-1 (required, implementation, automated)
Member data in non-POD class types shall be private.

See MISRA C++ 2008 [6]

See: POD-type, Standard-Layout-Class, Trivially-Copyable

Rule A11-0-1 (advisory, implementation, automated)
A non-POD type should be defined as class.

Rationale

Types that are not POD types are supposed to be defined as class objects, as a class
specifier forces the type to provide private access control for all its members by default.
This is consistent with developer expectations, because it is expected that a class has
its invariant, interface and could provide custom-defined constructors.

Example
1 // $Id: A11-0-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 #include <limits>

4 class A // Compliant - A provides user-defined constructors, invariant and

5 // interface

6 {

7 std::int32_t x; // Data member is private by default

8

9 public:

10 static constexpr std::int32_t maxValue =

11 std::numeric_limits<std::int32_t>::max();

12 A() : x(maxValue) {}

13 explicit A(std::int32_t number) : x(number) {}

14 A(A const&) = default;

15 A(A&&) = default;

16 A& operator=(A const&) = default;

17 A& operator=(A&&) = default;

139 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

18

19 std::int32_t getX() const noexcept { return x; }

20 void setX(std::int32_t number) noexcept { x = number; }

21 };

22 struct B // Non-compliant - non-POD type defined as struct

23 {

24 public:

25 static constexpr std::int32_t maxValue =

26 std::numeric_limits<std::int32_t>::max();

27 B() : x(maxValue) {}

28 explicit B(std::int32_t number) : x(number) {}

29 B(B const&) = default;

30 B(B&&) = default;

31 B& operator=(B const&) = default;

32 B& operator=(B&&) = default;

33

34 std::int32_t getX() const noexcept { return x; }

35 void setX(std::int32_t number) noexcept { x = number; }

36

37 private:

38 std::int32_t x; // Need to provide private access specifier for x member

39 };

40 struct C // Compliant - POD type defined as struct

41 {

42 std::int32_t x;

43 std::int32_t y;

44 };

45 class D // Compliant - POD type defined as class, but not compliant with

46 // M11-0-1

47 {

48 public:

49 std::int32_t x;

50 std::int32_t y;

51 };

See also

• C++ Core Guidelines [10]: C.2: Use class if the class has an invariant; use struct
if the data members can vary independently.

• stackoverflow.com [16]: When should you use a class vs a struct in C++?

Rule A11-0-2 (required, implementation, automated)
A type defined as struct shall: (1) provide only public data members, (2)
not provide any special member functions or methods, (3) not be a base of
another struct or class, (4) not inherit from another struct or class.

140 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently
http://stackoverflow.com/questions/54585/when-should-you-use-a-class-vs-a-struct-in-c

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

This is consistent with developer expectations that a class provides its invariant,
interface and encapsulation guarantee, while a struct is only an aggregate without any
class-like features.

An example of a struct type is POD type.

See: POD-type.

Example

1 // $Id: A11-0-2.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 struct A // Compliant

4 {

5 std::int32_t x;

6 double y;

7 };

8 struct B // Compliant

9 {

10 std::uint8_t x;

11 A a;

12 };

13 struct C // Compliant

14 {

15 float x = 0.0f;

16 std::int32_t y = 0;

17 std::uint8_t z = 0U;

18 };

19 struct D // Non-compliant

20 {

21 public:

22 std::int32_t x;

23

24 protected:

25 std::int32_t y;

26

27 private:

28 std::int32_t z;

29 };

30 struct E // Non-compliant

31 {

32 public:

33 std::int32_t x;

34 void fn() noexcept {}

35

36 private:

37 void f1() noexcept(false) {}

38 };

39 struct F : public D // Non-compliant

40 {

41 };

141 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See also

• stackoverflow.com [16]: When should you use a class vs a struct in C++?

6.11.3 Friends

Rule A11-3-1 (required, implementation, automated)
Friend declarations shall not be used.

Rationale

Friend declarations reduce encapsulation and result in code that is more difficult to
maintain.

Example

1 // $Id: A11-3-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 class A

3 {

4 public:

5 A& operator+=(A const& oth);

6 friend A const operator+(A const& lhs, A const& rhs); // Non-compliant

7 };

8 class B

9 {

10 public:

11 B& operator+=(B const& oth);

12 };

13 B const operator+(B const& lhs, B const& rhs) // Compliant

14 {

15 // Implementation

16 }

See also

• JSF December 2005 [7]: AV Rule 70 A class will have friends only when a function
or object requires access to the private elements of the class, but is unable to be
a member of the class for logical or efficiency reasons.

• HIC++ v4.0 [8]: 11.2.1 Do not use friend declarations.

6.12 Special member functions

6.12.0 General

Rule A12-0-1 (required, implementation, automated)
If a class defines any special member function “=default”, “=delete” or with a

142 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://stackoverflow.com/questions/54585/when-should-you-use-a-class-vs-a-struct-in-c
http://www.codingstandard.com/rule/11-2-1-do-not-use-friend-declarations/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

function definition, then all of the special member functions shall be defined.

Rationale

Semantics of all of the special member functions are closely related to each other.
If any special member function needs to be non-default, then all others need to be
defined too.

Note that this rule is also known as “the rule of five” or “the rule of six”.

Also, note that the rule allows to follow “the rule of zero” for types that do not need to
define any special member function.

Example

1 // $Id: A12-0-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 class A // Compliant - the class A follow the "Rule of six" rule

4 {

5 public:

6 A(); // Non-default constructor

7 ~A() = default;

8 A(A const&) = default;

9 A& operator=(A const&) = default;

10 A(A&&) = delete;

11 A& operator=(A&&) = delete;

12 };

13 class B // Non-compliant - some special functions are defined but not all of

14 // them

15 {

16 public:

17 B();

18 ~B();

19

20 private:

21 std::int32_t* pointer;

22 };

23 struct C // Compliant - no special functions are defined

24 {

25 std::int32_t number;

26 };

See also

• C++ Core Guidelines [10]: C.21: If you define or =delete any default operation,
define or =delete them all.

6.12.1 Constructors

143 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A12-1-1 (required, implementation, automated)
Constructors shall explicitly initialize all virtual base classes, all direct non-
virtual base classes and all non-static data members.

Rationale

A constructor of a class is supposed to completely initialize its object. Explicit
initialization of all virtual base classes, direct non-virtual base classes and non-static
data members reduces the risk of an invalid state after successful construction.

Example

1 // $Id: A12-1-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 class Base

4 {

5 // Implementation

6 };

7 class VirtualBase

8 {

9 };

10 class A : public virtual VirtualBase, public Base

11 {

12 public:

13 A() : VirtualBase{}, Base{}, i{0}, j{0} // Compliant

14 {

15 }

16 A(A const& oth)

17 : Base{}, j{0} // Non-compliant - VirtualBase base class and member

18 // i not initialized

19 {

20 }

21

22 private:

23 std::int32_t i;

24 std::int32_t j;

25 static std::int32_t k;

26 };

27 std::int32_t A::k{0};

See also

• MISRA C++ 2008 [6]: Rule 12-1-2 All constructors of a class should explicitly call
a constructor for all of its immediate base classes and all virtual base classes.

• HIC++ v4.0 [8]:12.4.2 Ensure that a constructor initializes explicitly all base
classes and non-static data members.

144 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-4-2-ensure-that-a-constructor-initializes-explicitly-all-base-classes-and-non-static-data-members/
http://www.codingstandard.com/rule/12-4-2-ensure-that-a-constructor-initializes-explicitly-all-base-classes-and-non-static-data-members/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M12-1-1 (required, implementation, automated)
An object’s dynamic type shall not be used from the body of its constructor
or destructor.

See MISRA C++ 2008 [6]

Note: This rule prohibits both direct and indirect usage of object’s dynamic type from
its constructor or destructor.

Rule A12-1-2 (required, implementation, automated)
Both NSDMI and a non-static member initializer in a constructor shall not be
used in the same type.

Rationale

Since 2011 C++ Language Standard it is allowed to initialize a non-static member
along with the declaration of the member in the class body using NSDMI (“non-static
data member initializer”). To avoid possible confusion which values are actually used,
if any member is initialized by NSDMI or with a constructor, then all others should be
initialized the same way.

Exception

The move and copy constructors are exempt from this rule, because these constructors
copy the existing values from other objects.

Example

1 // $Id: A12-1-2.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <utility>

4 class A

5 {

6 public:

7 A() : i1{0}, i2{0} // Compliant - i1 and i2 are initialized by the

8 // constructor only. Not compliant with A12-1-3

9 {

10 }

11 // Implementation

12

13 private:

14 std::int32_t i1;

15 std::int32_t i2;

16 };

17 class B

18 {

19 public:

20 // Implementation

21

22 private:

23 std::int32_t i1{0};

145 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 std::int32_t i2{

25 0}; // Compliant - both i1 and i2 are initialized by NSDMI only

26 };

27 class C

28 {

29 public:

30 C() : i2{0} // Non-compliant - i1 is initialized by NSDMI, i2 is in

31 // member in member initializer list

32 {

33 }

34 C(C const& oth) : i1{oth.i1}, i2{oth.i2} // Compliant by exception

35 {

36 }

37 C(C&& oth)

38 : i1{std::move(oth.i1)},

39 i2{std::move(oth.i2)} // Compliant by exception

40 {

41 }

42 // Implementation

43

44 private:

45 std::int32_t i1{0};

46 std::int32_t i2;

47 };

See also

• HIC++ v4.0 [8]:12.4.3 Do not specify both an NSDMI and a member initializer in
a constructor for the same non static member

Rule A12-1-3 (required, implementation, automated)
If all user-defined constructors of a class initialize data members with
constant values that are the same across all constructors, then data
members shall be initialized using NSDMI instead.

Rationale

Using NSDMI lets the compiler to generate the function that can be more efficient
than a user-defined constructor that initializes data member variables with pre-defined
constant values.

Example
1 // $Id: A12-1-3.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 class A

5 {

6 public:

7 A() : x(0), y(0.0F), str() // Non-compliant

8 {

9 }

146 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-4-3-do-not-specify-both-an-nsdmi-and-a-member-initializer-in-a-constructor-for-the-same-non-static-member/
http://www.codingstandard.com/rule/12-4-3-do-not-specify-both-an-nsdmi-and-a-member-initializer-in-a-constructor-for-the-same-non-static-member/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

10 // ...

11

12 private:

13 std::int32_t x;

14 float y;

15 std::string str;

16 };

17 class B

18 {

19 public:

20 // ...

21

22 private:

23 std::int32_t x = 0; // Compliant

24 float y = 0.0F; // Compliant

25 std::string str = ""; // Compliant

26 };

27 class C

28 {

29 public:

30 C() : x(0), y(0.0F), str() // Compliant

31 {

32 }

33 C(std::int32_t i, float f, std::string s) : x(i), y(f), str(s) // Compliant

34 {

35 }

36 // ...

37

38 private:

39 std::int32_t x =

40 0; // Non-compliant - there’s a constructor that initializes C

41 // class with user input

42 float y = 0.0F; // Non-compliant - there’s a constructor that initializes C

43 // class with user input

44 std::string str = ""; // Non-compliant - there’s a constructor that

45 // initializes C class with user input

46 };

See also

• C++ Core Guidelines [10]: C.45: Don’t define a default constructor that only
initializes data members; use in-class member initializers instead.

Rule A12-1-4 (required, implementation, automated)
All constructors that are callable with a single argument of fundamental type
shall be declared explicit.

Rationale

The explicit keyword prevents the constructor from being used to implicitly convert a
fundamental type to the class type.

147 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See: Fundamental-Types.

Example

1 // $Id: A12-1-4.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 class A

4 {

5 public:

6 explicit A(std::int32_t number) : x(number) {} // Compliant

7 A(A const&) = default;

8 A(A&&) = default;

9 A& operator=(A const&) = default;

10 A& operator=(A&&) = default;

11

12 private:

13 std::int32_t x;

14 };

15 class B

16 {

17 public:

18 B(std::int32_t number) : x(number) {} // Non-compliant

19 B(B const&) = default;

20 B(B&&) = default;

21 B& operator=(B const&) = default;

22 B& operator=(B&&) = default;

23

24 private:

25 std::int32_t x;

26 };

27 void f1(A a) noexcept

28 {

29 }

30 void f2(B b) noexcept

31 {

32 }

33 void f3() noexcept

34 {

35 f1(A(10));

36 // f1(10); // Compilation error - because of explicit constructor it is not

37 // possible to implicitly convert integer

38 // to type of class A

39 f2(B(20));

40 f2(20); // No compilation error - implicit conversion occurs

41 }

See also

• MISRA C++ 2008 [6]: Rule 12-1-3 (Required) All constructors that are callable
with a single argument of fundamental type shall be declared explicit.

148 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.12.4 Destructors

Rule A12-4-1 (required, implementation, automated)
Destructor of a base class shall be public virtual, public override or protected
non-virtual.

Rationale

If an object is supposed to be destroyed through a pointer or reference to its base
class, the destructor in the base class needs to be virtual. Otherwise, destructors for
derived types will not be invoked.

Note that if it is prohibited to destroy an object through a pointer or reference to its base
class, the destructor in the base class is supposed to be protected.

Example

1 // $Id: A12-4-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 class A

3 {

4 public:

5 ~A() // Non-compliant

6 {

7 }

8 };

9 class B : public A

10 {

11 };

12 class C

13 {

14 public:

15 virtual ~C() // Compliant

16 {

17 }

18 };

19 class D : public C

20 {

21 };

22 class E

23 {

24 protected:

25 ~E(); // Compliant

26 };

27 class F : public E

28 {

29 };

30 void f1(A* obj1, C* obj2)

31 {

32 // ...

33 delete obj1; // Only destructor of class A will be invoked

34 delete obj2; // Both destructors of D and C will be invoked

35 }

149 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

36 void f2()

37 {

38 A* a = new B;

39 C* c = new D;

40 f1(a, c);

41 }

See also

• JSF December 2005 [7]: AV Rule 78 All base classes with a virtual function shall
define a virtual destructor.

• HIC++ v4.0 [8]: 12.2.1 Declare virtual, private or protected the destructor of a
type used as a base class.

• C++ Core Guidelines [10]: C.35: A base class destructor should be either public
and virtual, or protected and nonvirtual.

• C++ Core Guidelines [10]: Discussion: Make base class destructors public and
virtual, or protected and nonvirtual.

Rule A12-4-2 (advisory, implementation, automated)
If a public destructor of a class is non-virtual, then the class should be
declared final.

Rationale

If a public destructor of a class is non-virtual (i.e. no virtual, override or final keyword),
then the class is not supposed to be used as a base class in inheritance hierarchy.

Note that a destructor needs to be virtual in a base class in order to correctly destroy
an instance of a derived class through a pointer to the base class.

Example
1 // $Id: A12-4-2.cpp 270924 2017-03-17 14:50:50Z piotr.tanski $

2 class A // Non-compliant - class A should not be used as a base class because

3 // its destructor is not virtual, but it is

4 // not declared final

5 {

6 public:

7 A() = default;

8 A(A const&) = default;

9 A(A&&) = default;

10 A& operator=(A const&) = default;

11 A& operator=(A&&) = default;

12 ~A() = default; // Public non-virtual destructor

13 };

14 class B final // Compliant - class B can not be used as a base class, because

15 // it is declared final, and it should not be derived

16 // because its destructor is not virtual

17 {

18 public:

150 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/section/12-2-destructors/
http://www.codingstandard.com/section/12-2-destructors/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namesd-dtoradiscussion-make-base-class-destructors-public-and-virtual-or-protected-and-nonvirtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namesd-dtoradiscussion-make-base-class-destructors-public-and-virtual-or-protected-and-nonvirtual

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

19 B() = default;

20 B(B const&) = default;

21 B(B&&) = default;

22 B& operator=(B const&) = default;

23 B& operator=(B&&) = default;

24 ~B() = default; // Public non-virtual destructor

25 };

26 class C // Compliant - class C is not final, and its destructor is virtual. It

27 // can be used as a base class

28 {

29 public:

30 C() = default;

31 C(C const&) = default;

32 C(C&&) = default;

33 C& operator=(C const&) = default;

34 C& operator=(C&&) = default;

35 virtual ~C() = default; // Public virtual destructor

36 };

37 class AA : public A

38 {

39 };

40 // class BA : public B // Compilation error - can not derive from final base

41 // class B

42 //{

43 //};

44 class CA : public C

45 {

46 };

47 void fn() noexcept

48 {

49 AA obj1;

50 CA obj2;

51 A& ref1 = obj1;

52 C& ref2 = obj2;

53

54 ref1.~A(); // Calls A::~A() only

55 ref2.~C(); // Calls both CA::~CA() and C::~C()

56 }

See also

• none

6.12.6 Initialization

Rule A12-6-1 (required, implementation, automated)
All class data members that are initialized by the constructor shall be
initialized using member initializers.

151 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

Using the constructor’s member initializers is more efficient than assigning a copy
of passed values to data members in the constructor’s body. Also, it supports the
programmer to prevent “data usage before initialization” errors.

Note that if a data member is already initialized using member initializer, then changing
its value in the constructor’s body does not violate this rule.

Example
1 // $Id: A12-6-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 class A

5 {

6 public:

7 A(std::int32_t n, std::string s) : number{n}, str{s} // Compliant

8 {

9 }

10 // Implementation

11

12 private:

13 std::int32_t number;

14 std::string str;

15 };

16 class B

17 {

18 public:

19 B(std::int32_t n, std::string s) // Non-compliant - no member initializers

20 {

21 number = n;

22 str = s;

23 }

24 // Implementation

25

26 private:

27 std::int32_t number;

28 std::string str;

29 };

30 class C

31 {

32 public:

33 C(std::int32_t n, std::string s) : number{n}, str{s} // Compliant

34 {

35 n += 1; // This does not violate the rule

36 str.erase(str.begin(),

37 str.begin() + 1); // This does not violate the rule

38 }

39 // Implementation

40

41 private:

42 std::int32_t number;

152 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

43 std::string str;

44 };

See also

• C++ Core Guidelines [10]: C.49: Prefer initialization to assignment in
constructors.

6.12.7 Construction and destructions

Rule A12-7-1 (required, implementation, automated)
If the behavior of a user-defined special member function is identical to
implicitly defined special member function, then it shall be defined “=default”
or be left undefined.

Rationale

If a user-defined version of a special member function is the same as would be provided
by the compiler, it will be less error prone and more maintainable to replace it with
“=default” definition or leave it undefined to let the compiler define it implicitly.

Note that this rule applies to all special member functions of a class.

See: Implicitly-Defined-Default-Constructor, Implicitly-Defined-
Copy-Constructor, Implicitly-Defined-Move-Constructor,
Implicitly-Defined-Copy-Assignment-Operator, Implicitly-Defined-
Move-Assignment-Operator, Implicitly-Defined-Destructor

Example

1 // $Id: A12-7-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 #include <utility>

4 class A

5 {

6 public:

7 A() : x(0), y(0) {} // Compliant

8 A(std::int32_t first, std::int32_t second) : x(first), y(second) {} //

Compliant

9 // -

10 // anyway, such

11 // a constructor

12 // cannot be

13 // defaulted.

14 A(const A& oth)

15 : x(oth.x),

16 y(oth.y) // Non-compliant - equivalent to the implicitly

17 // defined copy constructor

18 {

19 }

153 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

20 A(A&& oth)

21 : x(std::move(oth.x)),

22 y(std::move(

23 oth.y)) // Non-compliant - equivalent to the implicitly

24 // defined move constructor

25 {

26 }

27 ~A() // Non-compliant - equivalent to the implicitly defined destructor

28 {

29 }

30

31 private:

32 std::int32_t x;

33 std::int32_t y;

34 };

35 class B

36 {

37 public:

38 B() {} // Non-compliant - x and y are not initialized

39 // should be replaced with: B() : x{0}, y{0} {}

40 B(std::int32_t first, std::int32_t second) : x(first), y(second) {} //

Compliant

41 B(const B&) =

42 default; // Compliant - equivalent to the copy constructor of class A

43 B(B&&) =

44 default; // Compliant - equivalent to the move constructor of class A

45 ~B() = default; // Compliant - equivalent to the destructor of class A

46

47 private:

48 std::int32_t x;

49 std::int32_t y;

50 };

51 class C

52 {

53 public:

54 C() = default; // Compliant

55 C(const C&) = default; // Compliant

56 C(C&&) = default; // Compliant

57 };

58 class D

59 {

60 public:

61 D() : ptr(nullptr) {} // Compliant - this is not equivalent to what the

62 // implicitly defined default constructor would do

63 D(C* p) : ptr(p) {} // Compliant

64 D(const D&) = default; // Shallow copy will be performed, user-defined copy

65 // constructor is needed to perform deep copy on ptr variable

66 D(D&&) = default; // ptr variable will be moved, so ptr will still point to

67 // the same object

68 ~D() = default; // ptr will not be deleted, the user-defined destructor is

69 // needed to delete allocated memory

154 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

70

71 private:

72 C* ptr;

73 };

74 class E // Compliant - special member functions definitions are not needed as

75 // class E uses only implicit definitions

76 {

77 };

See also

• HIC++ v4.0 [8]: 12.5.2 Define special members =default if the behavior is
equivalent.

• C++ Core Guidelines [10]: C.80: Use =default if you have to be explicit about
using the default semantics.

6.12.8 Copying and moving class objects

Rule A12-8-1 (required, implementation, automated)
Move and copy constructors shall only move and respectively copy base
classes and data members of a class, without any side effects.

Rationale

It is expected behavior that the move/copy constructors are only used to move/copy
the object of the class type and eventually set copied-from or moved-from object to a
valid state.

Move and copy constructors of an object are frequently called by STL algorithms and
containers, so they are not supposed to provide any performance overhead or side
effects that could affect moving or copying the object.

Example

1 // $Id: A12-8-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <utility>

4 class A

5 {

6 public:

7 // Implementation

8 A(A const& oth) : x(oth.x) // Compliant

9 {

10 }

11

12 private:

13 std::int32_t x;

14 };

15 class B

155 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-5-2-define-special-members-default-if-the-behavior-is-equivalent/
http://www.codingstandard.com/rule/12-5-2-define-special-members-default-if-the-behavior-is-equivalent/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

16 {

17 public:

18 // Implementation

19 B(B&& oth) : ptr(std::move(oth.ptr)) // Compliant

20 {

21 oth.ptr = nullptr; // Compliant - this is not a side-effect, in this

22 // case it is essential to leave moved-from object

23 // in a valid state, otherwise double deletion will

24 // occur.

25 }

26 ~B() { delete ptr; }

27

28 private:

29 std::int32_t* ptr;

30 };

31 class C

32 {

33 public:

34 // Implementation

35 C(C const& oth) : x(oth.x)

36 {

37 // ...

38 x = x % 2; // Non-compliant - unrelated side-effect

39 }

40

41 private:

42 std::int32_t x;

43 };

See also

• MISRA C++ 2008 [6]: Rule 12-8-1 A copy constructor shall only initialize its base
classes and the nonstatic members of the class of which it is a member.

• HIC++ v4.0 [8]: 12.5.3 Ensure that a user defined move/copy constructor only
moves/copies base and member objects.

Rule A12-8-2 (advisory, implementation, automated)
User-defined copy and move assignment operators should use user-defined
no-throw swap function.

Rationale

Using a non-throwing swap operation in the copy and move assignment operators
helps to achieve Strong Exception Safety. Each assignment operator is also simplified
because it does not require check for assignment to itself.

Example
1 // $Id: A12-8-2.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <utility>

156 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-5-3-ensure-that-a-user-defined-movecopy-constructor-only-movescopies-base-and-member-objects/
http://www.codingstandard.com/rule/12-5-3-ensure-that-a-user-defined-movecopy-constructor-only-movescopies-base-and-member-objects/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4 class A

5 {

6 public:

7 A(const A& oth)

8 {

9 // ...

10 }

11 A(A&& oth) noexcept

12 {

13 // ...

14 }

15 A& operator=(const A& oth) & // Compliant

16 {

17 A tmp(oth);

18 swap(*this, tmp);

19 return *this;

20 }

21 A& operator=(A&& oth) & noexcept // Compliant

22 {

23 A tmp(std::move(oth));

24 swap(*this, tmp);

25 return *this;

26 }

27 static void swap(A& lhs, A& rhs) noexcept

28 {

29 std::swap(lhs.ptr1, rhs.ptr1);

30 std::swap(lhs.ptr2, rhs.ptr2);

31 }

32

33 private:

34 std::int32_t* ptr1;

35 std::int32_t* ptr2;

36 };

37 class B

38 {

39 public:

40 B& operator=(const B& oth) & // Non-compliant

41 {

42 if (this != &oth)

43 {

44 ptr1 = new std::int32_t(*oth.ptr1);

45 ptr2 = new std::int32_t(

46 *oth.ptr2); // Exception thrown here results in

47 // a memory leak of ptr1

48 }

49

50 return *this;

51 }

52 B& operator=(B&& oth) & noexcept // Non-compliant

53 {

54 if (this != &oth)

157 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

55 {

56 ptr1 = std::move(oth.ptr1);

57 ptr2 = std::move(oth.ptr2);

58 oth.ptr1 = nullptr;

59 oth.ptr2 = nullptr;

60 }

61

62 return *this;

63 }

64

65 private:

66 std::int32_t* ptr1;

67 std::int32_t* ptr2;

68 };

See also

• HIC++ v4.0 [8]: 12.5.6 Use an atomic, non-throwing swap operation to implement
the copy and move assignment operators

Rule A12-8-3 (required, implementation, partially automated)
Moved-from object shall not be read-accessed.

Rationale

Except in rare circumstances, an object will be left in an unspecified state after its
values has been moved into another object. Accessing data members of such object
may result in abnormal behavior and portability concerns.

Exception

It is permitted to access internals of a moved-from object if it is guaranteed to be left in
a well-specified state.

The following Standard Template Library functions are guaranteed to leave the moved-
from object in a well-specified state:

• move construction, move assignment, “converting” move construction and
“converting” move assignment of std::unique_ptr type

• move construction, move assignment, “converting” move construction,
“converting” move assignment of std::shared_ptr type

• move construction and move assignment from a std::unique_ptr of
std::shared_ptr type

• move construction, move assignment, “converting” move construction and
“converting” move assignment of std::weak_ptr type

• std::move() of std::basic_ios type

• move constructor and move assignment of std::basic_filebuf type

158 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-5-6-use-an-atomic-non-throwing-swap-operation-to-implement-the-copy-and-move-assignment-operators/
http://www.codingstandard.com/rule/12-5-6-use-an-atomic-non-throwing-swap-operation-to-implement-the-copy-and-move-assignment-operators/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• move constructor and move assignment of std::thread type

• move constructor and move assignment of std::unique_lock type

• move constructor and move assignment of std::shared_lock type

• move constructor and move assignment of std::promise type

• move constructor and move assignment of std::future type

• move construction, move assignment, “converting” move construction and
“converting” move assignment of std::shared_future type

• move constructor and move assignment of std::packaged_task type

Example
1 // $Id: A12-8-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <iostream>

4 #include <memory>

5 #include <string>

6 void f1()

7 {

8 std::string s1{"string"};

9 std::string s2{std::move(s1)};

10 // ...

11 std::cout << s1 << "\n"; // Non-compliant - s1 does not contain "string"

12 // value after move operation

13 }

14 void f2()

15 {

16 std::unique_ptr<std::int32_t> ptr1 = std::make_unique<std::int32_t>(0);

17 std::unique_ptr<std::int32_t> ptr2{std::move(ptr1)};

18 std::cout << ptr1.get() << std::endl; // Compliant by exception - move

19 // construction of std::unique_ptr

20 // leaves moved-from object in a

21 // well-specified state

22 }

See also

• SEI CERT C++ [9]: EXP63-CPP Do not rely on the value of a moved-from object.

Rule A12-8-4 (required, implementation, automated)
Move constructor shall not initialize its class members and base classes
using copy semantics.

Rationale

Data members or base classes initialization in move constructor needs to be done
with move semantics. Move construction is an optimization strategy and the copy-
initialization for data members and base classes will have negative impact on the
program’s performance, as well as it does not meet developer expectations.

159 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/EXP63-CPP.+Do+not+rely+on+the+value+of+a+moved-from+object

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Exception

In move constructor, copy initialization for data members of scalar types does not
violate this rule.

See: Scalar-Types.

Example

1 // $Id: A12-8-4.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 class A

5 {

6 public:

7 // ...

8 A(A&& oth)

9 : x(std::move(oth.x)), // Compliant

10 s(std::move(oth.s)) // Compliant

11 {

12 }

13

14 private:

15 std::int32_t x;

16 std::string s;

17 };

18 class B

19 {

20 public:

21 // ...

22 B(B&& oth)

23 : x(oth.x), // Compliant by exception, std::int32_t is of scalar

24 // type

25 s(oth.s) // Non-compliant

26 {

27 }

28

29 private:

30 std::int32_t x;

31 std::string s;

32 };

33 class C

34 {

35 public:

36 // ...

37 C(C&& oth)

38 : x(oth.x), // Compliant by exception

39 s(std::move(oth.s)) // Compliant

40 {

41 }

42

43 private:

44 std::int32_t x = 0;

160 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

45 std::string s = "Default string";

46 };

See also

• SEI CERT C++ [9]: OOP11-CPP Do not copy-initialize members or base classes
from a move constructor.

Rule A12-8-5 (required, implementation, automated)
A copy assignment and a move assignment operators shall handle self-
assignment.

Rationale

User-defined copy assignment operator and move assignment operator need to
prevent self-assignment, so the operation will not leave the object in an indeterminate
state. If the given parameter is the same object as the local object, destroying
object-local resources will invalidate them. It violates the copy/move assignment
postconditions.

Note that STL containers assume that self-assignment of an object is correctly handled.
Otherwise it may lead to unexpected behavior of an STL container.

Self-assignment problem can also be solved using swap operators. See rule: A12-8-2.

Example
1 // $Id: A12-8-5.cpp 271773 2017-03-23 13:16:53Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 struct A

5 {

6 std::int32_t number;

7 std::int32_t* ptr;

8 // Implementation

9 };

10 class B

11 {

12 public:

13 // ...

14 B& operator=(B const& oth) // Non-compliant

15 {

16 i = oth.i;

17 delete aPtr;

18

19 try

20 {

21 aPtr = new A(*oth.aPtr); // If this is the self-copy case, then

22 // the oth.a_ptr is already deleted

23 }

24 catch (std::bad_alloc&)

25 {

161 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/OOP11-CPP.+Do+not+copy-initialize+members+or+base+classes+from+a+move+constructor
https://www.securecoding.cert.org/confluence/display/cplusplus/OOP11-CPP.+Do+not+copy-initialize+members+or+base+classes+from+a+move+constructor

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

26 aPtr = nullptr;

27 }

28

29 return *this;

30 }

31

32 private:

33 std::int16_t i = 0;

34 A* aPtr = nullptr;

35 };

36 class C

37 {

38 public:

39 C& operator=(C const& oth) // Compliant

40 {

41 if (this != &oth)

42 {

43 A* tmpPtr = new A(*oth.aPtr);

44

45 i = oth.i;

46 delete aPtr;

47 aPtr = tmpPtr;

48 }

49 return *this;

50 }

51 C& operator=(C&& oth) // Compliant

52 {

53 if (this != &oth)

54 {

55 A* tmpPtr = new A{std::move(*oth.aPtr)};

56

57 i = oth.i;

58 delete aPtr;

59 aPtr = tmpPtr;

60 }

61 return *this;

62 }

63

64 private:

65 std::int16_t i = 0;

66 A* aPtr = nullptr;

67 };

See also

• SEI CERT C++ [9]: OOP54-CPP Gracefully handle self-assignment.

• C++ Core Guidelines [10]: C.62: Make copy assignment safe for self-assignment.

162 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/OOP54-CPP.+Gracefully+handle+self-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerc-copy-selfac62-make-copy-assignment-safe-for-self-assignment

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A12-8-6 (required, implementation, automated)
Copy and move constructors and copy assignment and move assignment
operators shall be declared protected or defined “=delete” in base class.

Rationale

Invoking copy or move constructor or copy assignment or move assignment operator
from the top of a class hierarchy bypasses the underlying implementations. This results
in “slicing” where only the base sub-objects being copied or moved.

Example
1 // $Id: A12-8-6.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <memory>

3 #include <utility>

4 #include <vector>

5 class A // Abstract base class

6 {

7 public:

8 A() = default;

9 A(A const&) = default; // Non-compliant

10 A(A&&) = default; // Non-compliant

11 virtual ~A() = 0;

12 A& operator=(A const&) = default; // Non-compliant

13 A& operator=(A&&) = default; // Non-compliant

14 };

15 class B : public A

16 {

17 };

18 class C // Abstract base class

19 {

20 public:

21 C() = default;

22 virtual ~C() = 0;

23

24 protected:

25 C(C const&) = default; // Compliant

26 C(C&&) = default; // Compliant

27 C& operator=(C const&) = default; // Compliant

28 C& operator=(C&&) = default; // Compliant

29 };

30 class D : public C

31 {

32 };

33 class E // Abstract base class

34 {

35 public:

36 E() = default;

37 virtual ~E() = 0;

38 E(E const&) = delete; // Compliant

39 E(E&&) = delete; // Compliant

40 E& operator=(E const&) = delete; // Compliant

163 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

41 E& operator=(E&&) = delete; // Compliant

42 };

43 class F : public E

44 {

45 };

46 class G // Non-abstract base class

47 {

48 public:

49 G() = default;

50 virtual ~G() = default;

51 G(G const&) = default; // Non-compliant

52 G(G&&) = default; // Non-compliant

53 G& operator=(G const&) = default; // Non-compliant

54 G& operator=(G&&) = default; // Non-compliant

55 };

56 class H : public G

57 {

58 };

59 void fn1() noexcept

60 {

61 B obj1;

62 B obj2;

63 A* ptr1 = &obj1;

64 A* ptr2 = &obj2;

65 *ptr1 = *ptr2; // Partial assignment only

66 *ptr1 = std::move(*ptr2); // Partial move only

67 D obj3;

68 D obj4;

69 C* ptr3 = &obj3;

70 C* ptr4 = &obj4;

71 //*ptr3 = *ptr4; // Compilation error - copy assignment operator of class C

72 // is protected

73 //*ptr3 = std::move(*ptr4); // Compilation error - move assignment operator

74 // of class C is protected

75 F obj5;

76 F obj6;

77 E* ptr5 = &obj5;

78 E* ptr6 = &obj6;

79 //*ptr5 = *ptr6; // Compilation error - use of deleted copy assignment

80 // operator

81 //*ptr5 = std::move(*ptr6); // Compilation error - use of deleted move

82 // assignment operator

83 H obj7;

84 H obj8;

85 G* ptr7 = &obj7;

86 G* ptr8 = &obj8;

87 *ptr7 = *ptr8; // Partial assignment only

88 *ptr7 = std::move(*ptr8); // Partial move only

89 }

90 class I // Non-abstract base class

91 {

164 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

92 public:

93 I() = default;

94 ~I() = default;

95

96 protected:

97 I(I const&) = default; // Compliant

98 I(I&&) = default; // Compliant

99 I& operator=(I const&) = default; // Compliant

100 I& operator=(I&&) = default; // Compliant

101 };

102 class J : public I

103 {

104 public:

105 J() = default;

106 ~J() = default;

107 J(J const&) = default;

108 J(J&&) = default;

109 J& operator=(J const&) = default;

110 J& operator=(J&&) = default;

111 };

112 void fn2() noexcept

113 {

114 std::vector<I> v1;

115 // v1.push_back(J{}); // Compilation-error on calling a deleted move

116 // constructor of I class, slicing does not occur

117 // v1.push_back(I{}); // Compilation-error on calling a deleted move

118 // constructor of I class

119

120 std::vector<J> v2;

121 v2.push_back(J{}); // No compilation error

122

123 std::vector<std::unique_ptr<I>> v3;

124 v3.push_back(std::unique_ptr<I>{}); // No compilation error

125 v3.push_back(std::make_unique<I>()); // No compilation error

126 v3.push_back(std::make_unique<J>()); // No compilation error

127 v3.emplace_back(); // No compilation error

128 }

See also

• MISRA C++ 2008 [6]: Rule 12-8-2 The copy assignment operator shall be
declared protected or private in an abstract class.

• HIC++ v4.0 [8]: 12.5.8 Make the copy assignment operator of an abstract class
protected or define it =delete.

• C++ Core Guidelines [10]: C.67: A base class should suppress copying, and
provide a virtual clone instead if "‘copying"’ is desired.

Rule A12-8-7 (advisory, implementation, automated)
Assignment operators should be declared with the ref-qualifier &.

165 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-5-8-make-the-copy-assignment-operator-of-an-abstract-class-protected-or-define-it-delete/
http://www.codingstandard.com/rule/12-5-8-make-the-copy-assignment-operator-of-an-abstract-class-protected-or-define-it-delete/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerc-copy-virtualac67-a-base-class-should-suppress-copying-and-provide-a-virtual-clone-instead-if-copying-is-desired
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerc-copy-virtualac67-a-base-class-should-suppress-copying-and-provide-a-virtual-clone-instead-if-copying-is-desired

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

User declared assignment operators differ from built-in operators in a way that they
accept rvalues as parameters, which is confusing. Adding & to the function declaration
prohibits rvalue parameters and ensures that all of the calls can only be made on lvalue
objects, which results with the same behavior as for built-in types.

Note that this rule applies to all assignment operators, e.g. operator=(), operator*=(),
operator+=.

Example

1 // $Id: A12-8-7.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 class A

4 {

5 public:

6 A() = default;

7 A& operator*=(std::int32_t i) // Non-compliant

8 {

9 // ...

10 return *this;

11 }

12 };

13 A f1() noexcept

14 {

15 return A{};

16 }

17 class B

18 {

19 public:

20 B() = default;

21 B& operator*=(std::int32_t) & // Compliant

22 {

23 // ...

24 return *this;

25 }

26 };

27 B f2() noexcept

28 {

29 return B{};

30 }

31 std::int32_t f3() noexcept

32 {

33 return 1;

34 }

35 int main(int, char**)

36 {

37 f1() *= 10; // Temporary result of f1() multiplied by 10. No compile-time

38 // error.

39 ;

40 // f2() *= 10; // Compile-time error due to ref-qualifier

166 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

41 ;

42 // f3() *= 10; // Compile-time error on built-in type

43 }

See also

• HIC++ v4.0 [8]: 12.5.7 Declare assignment operators with the ref-qualifier &.

• cppreference.com [15]: Assignment operators.

6.13 Overloading

6.13.1 Overloadable declarations

Rule A13-1-1 (required, implementation, automated)
User-defined literals shall not be used.

Rationale

User-defined literals permits only following types for parameter lists:

• const char*

• unsigned long long int

• long double

• char

• wchar_t

• char16_t

• char32_t

• const char*, std::size_t

• const wchar_t*, std::size_t

• const char16_t*, std::size_t

• const char32_t*, std::size_t

A programmer has limited control on the types of parameters passed to user-defined
conversion operators. Also, it is implementation-defined whether fixed-size types from
<cstdint> header are compatible with the types allowed by user-defined literals.

Note that user-defined literals are not widespread in C++ Standard Library. They are
used to convert literals to objects of type std::chrono::duration (i.e. h, min, s, ms, us,
ns), std::complex and basic_string.

Example

167 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/12-5-7-declare-assignment-operators-with-the-ref-qualifier/
http://en.cppreference.com/w/cpp/language/operator_assignment

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A13-1-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 constexpr unsigned long long int operator"" _ft(

4 unsigned long long int feet) // Non-compliant

5 {

6 // Implementation

7 return feet;

8 }

9 constexpr std::uint64_t operator"" _m(std::uint64_t meters) // Non-compliant

10 {

11 // Implementation

12 return meters;

13 }

14 void fn() noexcept

15 {

16 unsigned long long int feets = 200_ft;

17 // std::uint64_t meters = 300_m; // Compilation error - uint64_t has

18 // invalid

19 // type, not compatible with user-defined literals. On 64-bit machines,

20 // uint64_t is defined as unsigned long, and not unsigned long long

21 }

See also

• none

Rule A13-1-2 (required, implementation, automated)
User defined suffixes of the user defined literal operators shall start with
underscore followed by one or more letters.

Rationale

Suffixes that do not begin with the underscore character are reserved for operators
provided by the standard library.

Example

1 // $Id: A13-1-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 constexpr long double operator"" _m(long double meters) // Compliant

3 {

4 // Implementation

5 return meters;

6 }

7 constexpr long double operator"" _kg(long double kilograms) // Compliant

8 {

9 // Implementation

10 return kilograms;

11 }

12 constexpr long double operator"" m(long double meters) // Non-compliant

13 {

14 // Implementation

15 return meters;

168 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

16 }

17 constexpr long double operator"" kilograms(

18 long double kilograms) // Non-compliant

19 {

20 // Implementation

21 return kilograms;

22 }

23 void fn()

24 {

25 long double weight = 20.0_kg;

26 long double distance = 204.8_m;

27 }

See also

• none

Rule A13-1-3 (required, implementation, automated)
User defined literals operators shall only perform conversion of passed
parameters.

Rationale

It is expected behavior that the user-defined literals operators are only used to convert
passed parameters to the type of declared return value. User-defined literals are not
supposed to provide any other side-effects.

Example
1 // $Id: A13-1-3.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <iostream>

4 struct Cube

5 {

6 unsigned long long int volume;

7 constexpr explicit Cube(unsigned long long int v) : volume(v) {}

8 };

9 constexpr Cube operator"" _m3(unsigned long long int volume)

10 {

11 return Cube(volume); // Compliant

12 }

13 struct Temperature

14 {

15 unsigned long long int kelvins;

16 constexpr explicit Temperature(unsigned long long int k) : kelvins(k) {}

17 };

18 constexpr Temperature operator"" _K(unsigned long long int kelvins)

19 {

20 return Temperature(kelvins); // Compliant

21 }

22 static void sumDistances(std::int32_t distance)

23 {

169 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 static std::int32_t overallDistance = 0;

25 overallDistance += distance;

26 }

27 struct Distance

28 {

29 long double kilometers;

30 explicit Distance(long double kms) : kilometers(kms) {}

31 };

32 Distance operator"" _m(long double meters)

33 {

34 sumDistances(meters); // Non-compliant - function has a side-effect

35 return Distance(meters / 1000);

36 }

37 void operator"" _print(const char* str)

38 {

39 std::cout << str << ’\n’; // Non-compliant - user-defined literal operator

40 // does not perform conversion and has a

41 // side-effect

42 }

See also

• none

6.13.2 Declaration matching

Rule A13-2-1 (required, implementation, automated)
An assignment operator shall return a reference to “this”.

Rationale

Returning a type “T&” from an assignment operator is consistent with the C++ Standard
Library.

Example

1 // $Id: A13-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 class A

3 {

4 public:

5 // ...

6 A& operator=(const A&) & // Compliant

7 {

8 // ...

9 return *this;

10 }

11 };

12

13 class B

14 {

170 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

15 public:

16 // ...

17 const B& operator=(const B&) & // Non-compliant - violating consistency

18 // with standard types

19 {

20 // ...

21 return *this;

22 }

23 };

24

25 class C

26 {

27 public:

28 // ...

29 C operator=(const C&) & // Non-compliant

30 {

31 // ...

32 return *this;

33 }

34 };

35

36 class D

37 {

38 public:

39 // ...

40 D* operator=(const D&) & // Non-compliant

41 {

42 // ...

43 return this;

44 }

45 };

See also

• HIC++ v4.0 [8]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

• C++ Core Guidelines [10]: F.47: Return T& from assignment operators.

Rule A13-2-2 (required, implementation, automated)
A binary arithmetic operator and a bitwise operator shall return a “prvalue”.

Rationale

Returning a type “T” from binary arithmetic and bitwise operators is consistent with the
C++ Standard Library.

See: prvalue.

Example

1 // $Id: A13-2-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

171 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/
http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerf-assignment-opaf47-return-t-from-assignment-operators

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2 #include <cstdint>

3

4 class A

5 {

6 };

7

8 A operator+(A const&, A const&) noexcept // Compliant

9 {

10 return A{};

11 }

12 std::int32_t operator/(A const&, A const&) noexcept // Compliant

13 {

14 return 0;

15 }

16 A operator&(A const&, A const&)noexcept // Compliant

17 {

18 return A{};

19 }

20 const A operator-(A const&, std::int32_t) noexcept // Non-compliant

21 {

22 return A{};

23 }

24 A* operator|(A const&, A const&) noexcept // Non-compliant

25 {

26 return new A{};

27 }

See also

• HIC++ v4.0 [8]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

Rule A13-2-3 (required, implementation, automated)
A relational operator shall return a boolean value.

Rationale

Returning a type “bool” from a relational operator is consistent with the C++ Standard
Library.

Example
1 // $Id: A13-2-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3

4 class A

5 {

6 };

7

8 bool operator==(A const&, A const&) noexcept // Compliant

9 {

10 return true;

172 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/
http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

11 }

12 bool operator<(A const&, A const&) noexcept // Compliant

13 {

14 return false;

15 }

16 bool operator!=(A const& lhs, A const& rhs) noexcept // Compliant

17 {

18 return !(operator==(lhs, rhs));

19 }

20 std::int32_t operator>(A const&, A const&) noexcept // Non-compliant

21 {

22 return -1;

23 }

24 A operator>=(A const&, A const&) noexcept // Non-compliant

25 {

26 return A{};

27 }

28 const A& operator<=(A const& lhs, A const& rhs) noexcept // Non-compliant

29 {

30 return lhs;

31 }

See also

• HIC++ v4.0 [8]: 13.2.2 Ensure that the return type of an overloaded binary
operator matches the built-in counterparts.

6.13.3 Overload resolution

Rule A13-3-1 (required, implementation, automated)
A function that contains “forwarding reference” as its argument shall not be
overloaded.

Rationale

A template parameter that is declared “T&&” (Scott Meters called it a “universal
reference”, while C++ Language Standard calls it a “forwarding reference”) will deduce
for any type. Overloading functions with “forwarding reference” argument may lead to
developer’s confusion on which function will be called.

Exception

Declaring an overloading function that takes a “forwarding reference” parameter to be
“=delete” does not violate this rule.

Example
1 // $Id: A13-3-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 template <typename T>

4 void f1(T&& t) noexcept(false)

173 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/
http://www.codingstandard.com/rule/13-2-2-ensure-that-the-return-type-of-an-overloaded-binary-operator-matches-the-built-in-counterparts/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 {

6 }

7 void f1(

8 std::int32_t&& t) noexcept // Non-compliant - overloading a function with

9 // forwarding reference

10 {

11 }

12 template <typename T>

13 void f2(T&& t) noexcept(false)

14 {

15 }

16 void f2(std::int32_t&) = delete; // Compliant by exception

17

18 int main(int, char**)

19 {

20 std::int32_t x = 0;

21 f1(x); // Calls f1(T&&) with T = int&

22 f1(+x); // Calls f1(std::int32_t&&)

23 f1(0); // Calls f1(std::int32_t&&)

24 f1(0U); // Calls f1(T&&) with T = unsigned int

25 f2(0); // Calls f2(T&&) with T = int

26 // f2(x); // Compilation error, the overloading function is deleted

27 }

See also

• HIC++ v4.0 [8]: 13.1.2 If a member of a set of callable functions includes a
universal reference parameter, ensure that one appears in the same position for
all other members.

• Effective Modern C++ [12]: Item 26. Avoid overloading on universal references.

6.13.5 Overloaded operators

Rule A13-5-1 (required, implementation, automated)
If “operator[]” is to be overloaded with a non-const version, const version
shall also be implemented.

Rationale

A non-const overload of the subscript operator allows an object to be modified, by
returning a reference to member data, but it does not allow reading from const objects.
The const version of “operator[]” needs to be implemented to ensure that the operator
can be invoked on a const object.

Note that one can provide a const version of operator[] (to support read-only access to
elements), but without a non-const version.

Example

174 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/
http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/
http://www.codingstandard.com/rule/13-1-2-if-a-member-of-a-set-of-callable-functions-includes-a-universal-reference-parameter-ensure-that-one-appears-in-the-same-position-for-all-other-members/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A13-5-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 class Container1

4 {

5 public:

6 std::int32_t& operator[](

7 std::int32_t index) // Compliant - non-const version

8 {

9 return container[index];

10 }

11 std::int32_t operator[](

12 std::int32_t index) const // Compliant - const version

13 {

14 return container[index];

15 }

16

17 private:

18 static constexpr std::int32_t maxSize = 10;

19 std::int32_t container[maxSize];

20 };

21 void fn() noexcept

22 {

23 Container1 c1;

24 std::int32_t e = c1[0]; // Non-const version called

25 c1[0] = 20; // Non-const version called

26 Container1 const c2{};

27 e = c2[0]; // Const version called

28 // c2[0] = 20; // Compilation error

29 }

30 class Container2 // Non-compliant - only non-const version of operator[]

31 // implemented

32 {

33 public:

34 std::int32_t& operator[](std::int32_t index) { return container[index]; }

35

36 private:

37 static constexpr std::int32_t maxSize = 10;

38 std::int32_t container[maxSize];

39 };

See also

• HIC++ v4.0 [8]: 13.2.4 When overloading the subscript operator (operator[])
implement both const and non-const versions.

6.13.6 Build-in operators

Rule A13-6-1 (required, implementation, automated)
Digit sequences separators ’ shall only be used as follows: (1) for decimal,

175 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/13-2-4-when-overloading-the-subscript-operator-operator-implement-both-const-and-non-const-versions/
http://www.codingstandard.com/rule/13-2-4-when-overloading-the-subscript-operator-operator-implement-both-const-and-non-const-versions/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

every 3 digits, (2) for hexadecimal, every 2 digits, (3) for binary, every 4 digits.

Rationale

Since C++14 Language Standard it is allowed (optionally) to separate any two digits in
digit sequences with separator ’. However, to meet developer expectations, usage of
separator in integer and floating-point digit sequences should be unified:

• for decimal values, separator can be placed every 3 digits, e.g. 3’000’000,
3.141’592’653

• for hexadecimal values, separator can be placed every 2 digits, e.g.
0xFF’FF’FF’FF

• for binary values, separator can be placed very 4 digits, e.g. 0b1001’1101’0010

Example

1 // $Id: A13-6-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn() noexcept

4 {

5 std::uint32_t decimal1 = 3’000’000; // Compliant

6 std::uint32_t decimal2 = 4’500; // Compliant

7 std::uint32_t decimal3 = 54’00’30; // Non-compliant

8 float decimal4 = 3.141’592’653; // Compliant

9 float decimal5 = 3.1’4159’265’3; // Non-compliant

10 std::uint32_t hex1 = 0xFF’FF’FF’FF; // Compliant

11 std::uint32_t hex2 = 0xFAB’1’FFFFF; // Non-compliant

12 std::uint8_t binary1 = 0b1001’0011; // Compliant

13 std::uint8_t binary2 = 0b10’00’10’01; // Non-compliant

14 }

See also

• none

• ISO 26262-6 [4]: 8.4.4 e) readability and comprehensibility

6.14 Templates

6.14.0 General

6.14.1 Template parameters

Rule A14-1-1 (advisory, implementation, non-automated)
A template should check if a specific template argument is suitable for this
template.

176 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

If a template class or function requires specific characteristics from a template type
(e.g. if it is move constructible, copyable, etc.), then it needs to check whether the type
matches the requirements to detect possible faults. The goal of this rule is to ensure
that a template defines all of the preconditions that a template argument needs to fulfill
without having any information about the specific class.

This can be achieved in compile time using static_assert assertion.

Example

1 // $Id: A14-1-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <utility>

3 class A

4 {

5 public:

6 A() = default;

7 ~A() = default;

8 A(A const&) = delete;

9 A& operator=(A const&) = delete;

10 A(A&&) = delete;

11 A& operator=(A&&) = delete;

12 };

13 class B

14 {

15 public:

16 B() = default;

17 B(B const&) = default;

18 B& operator=(B const&) = default;

19 B(B&&) = default;

20 B& operator=(B&&) = default;

21 };

22 template <typename T>

23 void f1(T const& obj) noexcept(false)

24 {

25 static_assert(

26 std::is_copy_constructible<T>(),

27 "Given template type is not copy constructible."); // Compliant

28 }

29 template <typename T>

30 class C

31 {

32 // Compliant

33 static_assert(std::is_trivially_copy_constructible<T>(),

34 "Given template type is not trivially copy constructible.");

35

36 // Compliant

37 static_assert(std::is_trivially_move_constructible<T>(),

38 "Given template type is not trivially move constructible.");

39

40 // Compliant

177 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

41 static_assert(std::is_trivially_copy_assignable<T>(),

42 "Given template type is not trivially copy assignable.");

43

44 // Compliant

45 static_assert(std::is_trivially_move_assignable<T>(),

46 "Given template type is not trivially move assignable.");

47

48 public:

49 C() = default;

50 C(C const&) = default;

51 C& operator=(C const&) = default;

52 C(C&&) = default;

53 C& operator=(C&&) = default;

54

55 private:

56 T c;

57 };

58 template <typename T>

59 class D

60 {

61 public:

62 D() = default;

63 D(D const&) = default; // Non-compliant - T may not be copyable

64 D& operator=(D const&) = default; // Non-compliant - T may not be copyable

65 D(D&&) = default; // Non-compliant - T may not be movable

66 D& operator=(D&&) = default; // Non-compliant - T may not be movable

67

68 private:

69 T d;

70 };

71 void f2() noexcept

72 {

73 A a;

74 B b;

75 // f1<A>(a); // Class A is not copy constructible, compile-time error

76 // occurs

77 f1(b); // Class B is copy constructible

78 // C<A> c1; // Class A can not be used for template class C, compile-time

79 // error occurs

80 C c2; // Class B can be used for template class C

81 D<A> d1;

82 // D<A> d2 = d1; // Class D can not be copied, because class A is not

83 // copyable, compile=time error occurs

84 // D<A> d3 = std::move(d1); // Class D can not be moved, because class A is

85 // not movable, compile-time error occurs

86 D d4;

87 D d5 = d4;

88 D d6 = std::move(d4);

89 }

See also

178 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• C++ Core Guidelines [10]: T.150: Check that a class matches a concept using
static_assert.

6.14.5 Template declarations

Rule M14-5-2 (required, implementation, automated)
A copy constructor shall be declared when there is a template constructor
with a single parameter that is a generic parameter.

See MISRA C++ 2008 [6]

Note: Move constructor will not be generated implicitly if a user defines a copy
constructor.

Rule M14-5-3 (required, implementation, automated)
A copy assignment operator shall be declared when there is a template
assignment operator with a parameter that is a generic parameter.

See MISRA C++ 2008 [6]

6.14.6 Name resolution

Rule M14-6-1 (required, implementation, automated)
In a class template with a dependent base, any name that may be found in
that dependent base shall be referred to using a qualified-id or this->.

See MISRA C++ 2008 [6]

6.14.7 Template instantiation and specialization

Rule A14-7-1 (required, implementation, automated)
A type used as a template argument shall provide all members that are used
by the template.

Rationale

If a type used as a template argument does not provide all the members used by the
template, the instantiation of the template will result in an ill-formed program. It is not
clear for developer whether the template should be used with the type.

Example
1 // $Id: A14-7-1.cpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #include <cstdint>

179 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

3 class A

4 {

5 public:

6 void setProperty(std::int32_t x) noexcept { property = x; }

7 void doSomething() noexcept {}

8

9 private:

10 std::int32_t property;

11 };

12 struct B

13 {

14 };

15 class C

16 {

17 public:

18 void doSomething() noexcept {}

19 };

20 template <typename T>

21 class D

22 {

23 public:

24 void f1() {}

25 void f2()

26 {

27 T t;

28 t.setProperty(0);

29 }

30 void f3()

31 {

32 T t;

33 t.doSomething();

34 }

35 };

36

37 void fn() noexcept

38 {

39 D<A> d1; // Compliant - struct A provides all needed members

40 d1.f1();

41 d1.f2();

42 d1.f3();

43

44 D d2; // Non-compliant - struct B does not provide needed members

45 d2.f1();

46 // d2.f2(); // Compilation error - no ’property’ in struct B

47 // d2.f3(); // Compilation error - no member named ’doSomething’ in struct

48 // B

49

50 D<C> d3; // Non-compliant - struct C does not provide property

51 d3.f1();

52 // d3.f2(); // Compilation error - no property in struct C

53 d3.f3();

180 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

54 }

See also

• MISRA C++ 2008 [6]: Rule 14-7-2 (Required) For any given template
specialization, an explicit instantiation of the template with the template
arguments used in the specialization shall not render the program ill-formed.

Rule M14-7-3 (required, implementation, automated)
All partial and explicit specializations for a template shall be declared in the
same file as the declaration of their primary template.

See MISRA C++ 2008 [6]

Note: If no partial or explicit specializations for a template are needed, then they do
not have to be declared.

6.14.8 Function template specializations

Rule M14-8-1 (required, implementation, automated)
Overloaded function templates shall not be explicitly specialized.

See MISRA C++ 2008 [6]

Rule A14-8-1 (advisory, implementation, automated)
The set of function overloads should not contain function templates,
functions specializations and non-template overloading functions.

Rationale

If a function template or function specialization and a non-template overloading function
are equivalent after overload resolution, the non-template overloading function will be
chosen by the compiler. This may be inconsistent with developer expectations.

Exception

This rule does not apply to copy constructors or copy assignment operators.

Example

1 // $Id: A14-8-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 template <typename T>

4 void f1(T t)

5 {

6 // Implementation

7 }

8 void f1(std::int16_t n)

181 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

9 {

10 // Implementation

11 }

12 void fn1() noexcept

13 {

14 std::int16_t x = 0;

15 f1(x); // f1(std::int16_t) is called

16 f1(x + 10); // f1(T) is called with T = int

17 f1<>(x); // explicit call to f1(T) with T = short int

18 f1<>(x + 10); // explicit call to f1(T) with T = int

19 }

20 template <typename T>

21 void f2(T t)

22 {

23 // Implementation

24 }

25 template <>

26 void f2<std::int16_t>(std::int16_t n)

27 {

28 // Implementation

29 }

30 void f2(std::int16_t n)

31 {

32 // Implementation

33 }

34 void fn2() noexcept

35 {

36 std::int16_t x = 0;

37 f2(x); // f2(std::int16_t) is called

38 f2(x + 10); // f2(T) is called with T = int

39 f2<>(x); // explicit call to f2<std::int16_t>(std::int16_t)

40 f2<>(x + 10); // explicit call to f2(T) with T = int

41 f2<std::int16_t>(x +

42 10); // explicit call to f2<std::int16_t>(std::int16_t)

43 }

44 void f3(std::int16_t n)

45 {

46 // Implementation

47 }

48 void f3(std::int32_t n)

49 {

50 // Implementation

51 }

52 void fn3() noexcept

53 {

54 std::int16_t x = 0;

55 f3(x); // f3(std::int16_t) is called

56 f3(x + 10); // f3(std::int32_t) is called

57 }

58 template <typename T>

59 void f4(T t)

182 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

60 {

61 // Implementation

62 }

63 template <>

64 void f4<std::int16_t>(std::int16_t n)

65 {

66 // Implementation

67 }

68 void fn4() noexcept

69 {

70 std::int16_t x = 0;

71 f4(x); // f4(T) with T = short int is called

72 f4(x + 10); // f4(T) with T = int is called

73 f4<std::int16_t>(x + 100); // explicit call to f4(T) with T = short int

74 }

See also

• MISRA C++ 2008 [6]: Rule 14-8-2 (Advisory) The viable function set for a function
call should either contain no function specializations, or only contain function
specializations.

6.15 Exception handling

Advantages of using exceptions

“The exception handling mechanism can provide an effective and clear means of
handling error conditions, particularly where a function needs to return both some
desired result together with an indication of success or failure. However, because
of its ability to transfer control back up the call tree, it can also lead to code that is
difficult to understand. Hence it is required that the mechanism is only used to capture
behavior that is in some sense undesirable, and which is not expected to be seen in
normal program execution.” [MISRA C++ 2008]

“The preferred mechanism for reporting errors in a C++ program is exceptions rather
than using error codes. A number of core language facilities, including dynamic_cast,
operator new(), and typeid, report failures by throwing exceptions. In addition, the C++
standard library makes heavy use of exceptions to report several different kinds of
failures. Few C++ programs manage to avoid using some of these facilities.” [ISO C++
Core Guidelines].

Consequently, C++ programs need to be prepared for exceptions to occur and need to
handle each appropriately.

Challenges of using exceptions

Issue: Solution:

183 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Correctness of the exception handling Exception handling mechanism is implemented by
the compiler (by its library functions and machine
code generator) and defined by the C++ Language
Standard. Rule A1-2-1 requires that the compiler
(including its exception handling routines), when
used for safety-related software, meets appropriate
safety requirements.

Hidden control flow ISO 26262-6 (Table *) recommends “no hidden
data flow or control flow” for ASIL A software and
highly recommends it for ASIL B/C/D. Therefore, the
Rule A15-0-1 prohibits the usage of exceptions for
normal control flow of software - they are allowed
only for errors where a function failed to perform its
assigned task.

Additional exit point from functions ISO 26262-6 (Table *) highly recommends “one
entry and one exit point in subprograms and
functions” for ASIL A software. Therefore, the
Rule A15-0-1 prohibits the usage of exceptions for
normal control flow of software - they are allowed
only for errors where a function failed to perform its
assigned task. Moreover, AUTOSAR C++ Coding
Guidelines does not force developers to strictly
follow single-point of exit approach as it does not
necessarily make the code more readable or easier
to maintain.

Code readability If exceptions are used correctly, in particularly by
using checked and unchecked exception types, see
Rules: A15-0-4 and A15-0-5, the code is easier to
read and maintain than if using error codes. It avoids
nesting if/else error-checking statements.

Exception safety and
program state consistency after exception is
thrown

The Rule A15-0-2 requires that functions provide at
least “basic exception safety” (Note: this C++ term
is not related to functional safety)

Impact on runtime performance If a function does not throw an exception (i.e. error
conditions do not occur), then there could be a little
overhead due to exception handling mechanism
initialization. However, some compilers offer “zero
cost exception handling”, which means that there
is no performance overhead if the exception is not
thrown.

Impact on worst-case execution time The A15-0-7 rule requires that the
exception handling mechanism provides real-time
implementation. Note that this is not the case for
e.g. GCC compiler that allocates dynamic memory
on throwing an exception. However, it is possible to
fix it simply by avoiding memory allocation.

184 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Maturity of exceptions Exceptions are a widespread concept in several
programming languages, not only in C++, but also
in e.g. Ada, Java, Modula-3, ML, OCaml, Python,
Ruby, C#, Lisp, Eiffel, and Modula-2.

Tool support There are several tools that support exceptions well:
compilers (e.g. gcc, clang, visual studio), IDEs
(e.g. eclipse, clion, visual studio), static analysis
tools (e.g. QA C++, Coverity Prevent) and compiler
validation suites (e.g. supertest).

Appropriate usage of exceptions in
implementation

Exceptions need to be used properly in the code,
therefore this document specifies almost 40 precise
rules defining how to code using exceptions, in
particular defining the rules for checked/unchecked
exceptions.

Table 6.1: Challenges of exceptions usage

Checked and unchecked exceptions

Like MISRA introduces a concept of "underlying type", AUTOSAR C++14 Guidelines
introduces a concept of unchecked and checked exceptions. This is based on
the classification used in Java language, having as a goal an efficient, complete
and consistent way of specifying the exceptions. There are therefore two exclusive
categories of exceptions:

• Unchecked Exceptions: Used to represent errors that a program can not recover
from, so they are not supposed to be declared by functions nor caught by caller
functions. These are all exceptions (either built-in or user-defined) that are
instances or subclasses of one of the following standard exception type:

– logic_error

– bad_typeid

– bad_cast

– bad_weak_ptr

– bad_function_call

– bad_alloc

– bad_exception

• Checked Exceptions: Used to represent errors that are expected and reasonable
to recover from, so they are supposed to be declared by functions and caught
and handled. These are all standard and user-defined exceptions that are not
classified as “unchecked”, i.e. they are instances or subclasses of one of the
following standard exception type:

– exception

185 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

– runtime_error

“Checked exceptions are a wonderful feature of the Java programming language.
Unlike return codes, they force the programmer to deal with exceptional conditions,
greatly enhancing reliability.” [Effective Java 2nd Edition [14]]

The following sections specify several specific rules defining the usage of exceptions,
in particular concerning the use of unchecked and checked exceptions.

6.15.0 General

Rule A15-0-1 (required, implementation, non-automated)
A function shall not exit with an exception if it is able to complete its task.

Rationale

“The notion of an exception is provided to help get information from the point where an
error is detected to a point where it can be handled. A function that cannot cope with
a problem throws an exception, hoping that its (direct or indirect) caller can handle the
problem. A function that wants to handle a kind of problem indicates that by catching
the corresponding exception.” [The C++ Programming Language [13]]

Exceptions are only supposed to be used to capture incorrect, and which is not
expected to be seen in normal program, execution. Using exception handling
mechanism to transfer control back up the call stack, in error-free situation, leads to
code that is difficult to understand and significantly less efficient than returning from a
function.

Note that most of the monitoring or supervision functions are not supposed to throw an
exception when an error is detected.

Example

1 //% $Id: A15-0-1.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <fstream>

3 #include <stdexcept>

4 #include <string>

5 #include <vector>

6 std::uint8_t computeCrc(std::string& msg);

7 bool isMessageCrcCorrect1(std::string& message)

8 {

9 std::uint8_t computedCRC = computeCrc(message);

10 std::uint8_t receivedCRC = message.at(0);

11

12 if (computedCRC != receivedCRC)

13 {

14 throw std::logic_error(

15 "Computed CRC is invalid."); // Non-compliant - CheckMessageCRC()

16 // was able to perform

17 // its task, nothing exceptional about its invalid result

186 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

18 }

19

20 return true;

21 }

22 bool isMessageCrcCorrect2(std::string& message)

23 {

24 bool isCorrect = true;

25 std::uint8_t computedCRC = computeCrc(message);

26 std::uint8_t receivedCRC = message.at(0);

27

28 if (computedCRC != receivedCRC)

29 {

30 isCorrect =

31 false; // Compliant - if CRC is not correct, then return "false"

32 }

33

34 return isCorrect;

35 }

36 void sendData(std::string message)

37 {

38 if (message.empty())

39 {

40 throw std::logic_error("Preconditions are not met."); // Compliant -

41 // SendData() was

42 // not able to

43 // perform its

44 // task

45 }

46

47 bool sendTimeoutReached = false;

48

49 // Implementation

50 if (sendTimeoutReached)

51 {

52 throw std::runtime_error(

53 "Timeout on sending a message has been reached."); // Compliant -

54 // SendData()

55 // did not

56 // perform its

57 // task

58 }

59 }

60 std::int32_t findIndex(std::vector<std::int32_t>& v, std::int32_t x) noexcept

61 {

62 try

63 {

64 std::size_t size = v.size();

65 for (std::size_t i = 0U; i < size; ++i)

66 {

67 if (v.at(i) == x) // v.at() throws an std::out_of_range exception

68 {

187 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

69 throw i; // Non-compliant - nothing exceptional about finding a

70 // value in vector

71 }

72 }

73 }

74

75 catch (std::size_t

76 foundIdx) // Non-compliant - nothing exceptional about finding a

77 // value in vector

78 {

79 return foundIdx;

80 }

81

82 catch (std::out_of_range&

83 e) // Compliant - std::out_of_range error shall be handled

84 {

85 return -1;

86 }

87

88 return -1;

89 }

90 bool readFile(std::string& filename) noexcept

91 {

92 try

93 {

94 std::ifstream file(filename, std::ios_base::in);

95

96 if (!file.is_open())

97 {

98 throw std::runtime_error(

99 "File cannot be opened"); // Compliant - error on opening a

100 // file is an exceptional case

101 }

102

103 char c = file.get();

104

105 if (!file.good())

106 {

107 throw std::runtime_error(

108 "Cannot read from file"); // Compliant - error on reading from

109 // file is an exceptional case

110 }

111 }

112

113 catch (std::exception& e)

114 {

115 return false;

116 }

117

118 return true;

119 }

188 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

120 void fn1(

121 std::uint32_t x) // Non-compliant - inefficient and less readable version

122 // than its obvious alternative, e.g. fn2()

123 // function

124 {

125 try

126 {

127 if (x < 10)

128 {

129 throw 10;

130 }

131

132 // Action "A"

133 }

134

135 catch (std::int32_t y)

136 {

137 // Action "B"

138 }

139 }

140 void fn2(

141 std::uint32_t x) // Compliant - the same functionality as fn1() function

142 {

143 if (x < 10)

144 {

145 // Action "B"

146 }

147 else

148 {

149 // Action "A"

150 }

151 }

See also

• MISRA C++ 2008 [6]: 15-0-1 (Document) Exceptions shall only be used for error
handling.

• C++ Core Guidelines [10]: E.3: Use exceptions for error handling only

• Effective Java 2nd Edition [14]: Item 57: Use exceptions only for exceptional
conditions

• The C++ Programming Language [13], 13.1.1. Exceptions

Rule A15-0-2 (required, implementation, partially automated)
At least the basic guarantee for exception safety shall be provided for all
operations. In addition, each function may offer either the strong guarantee
or the nothrow guarantee

189 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-errors
http://jtechies.blogspot.com/2012/07/item-57-use-exceptions-only-for.html
http://jtechies.blogspot.com/2012/07/item-57-use-exceptions-only-for.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

Exceptions introduce additional data flow into a program. It is important to consider all
the effects of code taking such paths to always recover from an exception error properly
and always preserve object’s invariants.

“Well-designed functions are exception safe, meaning they offer at least the basic
exception safety guarantee (i.e., the basic guarantee). Such functions assure callers
that even if an exception is thrown, program invariants remain intact (i.e., no data
structures are corrupted) and no resources are leaked. Functions offering the strong
exception safety guarantee (i.e., the strong guarantee) assure callers that if an
exception arises, the state of the program remains as it was prior to the call.” [effective
modern c++]

The C++ standard library always provides one of the following guarantees for its
operations, the same needs to be followed by code compliant to the guidelines. “

• Basic guarantee for all operations: The basic invariants of all objects are
maintained, and no resources, such as memory, are leaked. In particular, the
basic invariants of every built-in and standard-library type guarantee that you can
destroy an object or assign to it after every standard-library operation

• Strong guarantee for key operations: in addition to providing the basic guarantee,
either the operation succeeds, or it has no effect.

• Nothrow guarantee for some operations: in addition to providing the basic
guarantee, some operations are guaranteed not to throw any exception.

” [C++ Programming Reference]

Nothrow means in this context that the function not only does not exit with an exception,
but also that internally an exception cannot occur.

Example

1 //% $Id: A15-0-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <cstring>

4 class C1

5 {

6 public:

7 C1(const C1& rhs)

8 {

9 copyBad(rhs); // Non-compliant - if an exception is thrown, an object

10 // will be left in an indeterminate state

11 copyGood(rhs); // Compliant - full object will be properly copied or

12 // none of its properties will be changed

13 }

14 ~C1() { delete[] e; }

15 void copyBad(const C1& rhs)

16 {

17 if (this != &rhs)

18 {

190 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

19 delete[] e;

20 e = nullptr; // e changed before the block where an exception can

21 // be thrown

22 s = rhs.s; // s changed before the block where an exception can be

23 // thrown

24

25 if (s > 0)

26 {

27 e = new std::int32_t[s]; // If an exception will be thrown

28 // here, the

29 // object will be left in an indeterminate

30 // state

31 std::memcpy(e, rhs.e, s * sizeof(std::int32_t));

32 }

33 }

34 }

35 void copyGood(const C1& rhs)

36 {

37 std::int32_t* eTmp = nullptr;

38

39 if (rhs.s > 0)

40 {

41 eTmp = new std::int32_t[rhs.s]; // If an exception will be thrown

42 // here, the

43 // object will be left unchanged

44 std::memcpy(eTmp, rhs.e, rhs.s * sizeof(std::int32_t));

45 }

46

47 delete[] e;

48 e = eTmp;

49 s = rhs.s;

50 }

51

52 private:

53 std::int32_t* e;

54 std::size_t s;

55 };

56 class A

57 {

58 public:

59 A() = default;

60 };

61 class C2

62 {

63 public:

64 C2() : a1(new A), a2(new A) // Non-compliant - if a2 memory allocation

65 // fails, a1 will never be deallocated

66 {

67 }

68

69 private:

191 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

70 A* a1;

71 A* a2;

72 };

73 class C3

74 {

75 public:

76 C3() : a1(nullptr), a2(nullptr) // Compliant

77 {

78 try

79 {

80 a1 = new A;

81 a2 = new A; // If memory allocation for a2 fails, catch-block will

82 // deallocate a1

83 }

84

85 catch (...)

86 {

87 delete a1;

88 a1 = nullptr;

89 delete a2;

90 a2 = nullptr;

91 throw;

92 }

93 }

94

95 private:

96 A* a1;

97 A* a2;

98 };

See also

• SEI CERT C++ [9]: ERR56-CPP. Guarantee exception safety

Rule A15-0-3 (required, implementation, non-automated)
Exception safety guarantee of a called function shall be considered.

Rationale

Supplying an external function with an object that throws an exception on specific
operations (e.g. in special member functions) may lead to function’s unexpected
behavior.

Note that the result of a function call supplied with an object which throws on specific
operations may differ when the function guarantees the basic exception safety and the
strong exception safety.

Example
1 //% $Id: A15-0-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

192 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR56-CPP.+Guarantee+exception+safety

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4 #include <vector>

5 class A

6 {

7 public:

8 explicit A(std::int32_t value) noexcept(false) : x(value)

9 {

10 if (x == 0)

11 {

12 throw std::invalid_argument("Constructor: Invalid Argument");

13 }

14 }

15

16 private:

17 std::int32_t x;

18 };

19 int main(int, char**)

20 {

21 constexpr std::int32_t limit = 10;

22 std::vector<A> vec1; // Constructor and assignment operator of A class

23 // throw exceptions

24

25 try

26 {

27 for (std::int32_t i = 1; i < limit; ++i)

28 {

29 vec1.push_back(A(i)); // Constructor of A class will not throw for

30 // value from 1 to 10

31 }

32

33 vec1.emplace(vec1.begin(),

34 0); // Non-compliant - constructor A(0) throws in an

35 // emplace() method of std::vector. This leads to

36 // unexpected result of emplace() method. Throwing an

37 // exception inside an object constructor in emplace()

38 // leads to duplication of one of vector’s elements.

39 // Vector invariants are valid and the object is destructible.

40 }

41 catch (std::invalid_argument& e)

42 {

43 // Handle an exception

44 }

45

46 std::vector<A> vec2;

47 vec2.reserve(limit);

48 try

49 {

50 for (std::int32_t i = limit - 1; i >= 0; --i)

51 {

52 vec2.push_back(A(i)); // Compliant - constructor of A(0) throws for

53 // i = 0, but in this case strong exception

54 // safety is guaranteed. While push_back()

193 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

55 // offers strong exception safety guarantee,

56 // push_back can only succeed to add a new

57 // element or fails and does not change the

58 // container

59 }

60 }

61 catch (std::invalid_argument& e)

62 {

63 // Handle an exception

64 }

65

66 return 0;

67 }

See also

• none

Rule A15-0-4 (required, implementation, non-automated)
Unchecked exceptions shall be used to represent errors from which the
caller cannot reasonably be expected to recover.

Rationale

Problems that are unpreventable and not expected by the caller are represented with
instances of unchecked exceptions category. Such problems include:

• Software errors, i.e. preconditions/postconditions violations, arithmetic errors,
failed assertions, sanity checks or invalid variable access, that in C++ are
represented by logic_error, bad_exception, bad_cast and bad_typeid exceptions
or their subclasses

• Internal errors of the executable (like VirtualMachineError of Java language), that
in C++ are represented by bad_alloc and bad_array_new_length exceptions

It is not possible to recover from such errors in a meaningful way.

Example

1 //% $Id: A15-0-4.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 class InvalidArguments : public std::logic_error // Compliant - invalid

5 // arguments error is

6 // "unchecked" exception

7 {

8 public:

9 using std::logic_error::logic_error;

10 };

11 class OutOfMemory : public std::bad_alloc // Compliant - insufficient memory

12 // error is "unchecked" exception

13 {

194 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

14 public:

15 using std::bad_alloc::bad_alloc;

16 };

17 class DivisionByZero : public std::logic_error // Compliant - division by zero

18 // error is "unchecked"

19 // exception

20 {

21 public:

22 using std::logic_error::logic_error;

23 };

24 class CommunicationError : public std::logic_error // Non-compliant -

25 // communication error

26 // should be "checked"

27 // exception but defined to be "unchecked"

28 {

29 public:

30 using std::logic_error::logic_error;

31 };

32 double division(std::int32_t a, std::int32_t b) noexcept(false)

33 {

34 // ...

35 if (b == 0)

36 {

37 throw DivisionByZero(

38 "Division by zero error"); // Unchecked exception thrown correctly

39 }

40

41 // ...

42 }

43 void allocate(std::uint32_t bytes) noexcept(false)

44 {

45 // ...

46 throw OutOfMemory(); // Unchecked exception thrown correctly

47 }

48 void initializeSocket() noexcept(false)

49 {

50 bool validParameters = true;

51

52 // ...

53 if (!validParameters)

54 {

55 throw InvalidArguments("Invalid parameters passed"); // Unchecked

56 // exception

57 // thrown

58 // correctly

59 }

60 }

61 void sendData(std::int32_t socket) noexcept(false)

62 {

63 // ...

64 bool isSentSuccessfully = true;

195 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

65

66 // ...

67 if (!isSentSuccessfully)

68 {

69 throw CommunicationError("Could not send data"); // Unchecked exception

70 // thrown when checked

71 // exception should

72 // be.

73 }

74 }

See also

• Effective Java: Item 58: Use checked exceptions for recoverable conditions and
runtime exceptions for programming errors, Item 60: Favor the use of standard
exceptions

Rule A15-0-5 (required, implementation, non-automated)
Checked exceptions shall be used to represent errors from which the caller
can reasonably be expected to recover.

Rationale

All expected by the caller, but also reasonable to recover from, problems are
represented with instances of checked exceptions, in C++ represented by instances or
subclasses of std::exception and std::runtime_error exceptions. Such problems include
input/output and other application’s runtime errors. It is possible to handle such errors
in a meaningful way.

“Overuse of checked exceptions can make an API far less pleasant to use. If a method
throws one or more checked exceptions, the code that invokes the method must handle
the exceptions in one or more catch blocks, or it must declare that it throws the
exceptions and let them propagate outward. Either way, it places a nontrivial burden
on the programmer.

The burden is justified if the exceptional condition cannot be prevented by proper
use of the API and the programmer using the API can take some useful action once
confronted with the exception. Unless both of these conditions hold, an unchecked
exception is more appropriate.” [Effective Java 2nd Edition [14]]

Example
1 //% $Id: A15-0-5.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 class CommunicationError

5 : public std::exception // Compliant - communication error is "checked"

6 {

7 public:

8 explicit CommunicationError(const char* message) : msg(message) {}

9 CommunicationError(CommunicationError const&) noexcept = default;

196 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58
http://jtechies.blogspot.com/2012/07/item-60-favor-use-of-standard.html
http://jtechies.blogspot.com/2012/07/item-60-favor-use-of-standard.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

10 CommunicationError& operator=(CommunicationError const&) noexcept = default;

11 ~CommunicationError() override = default;

12

13 const char* what() const noexcept override { return msg; }

14

15 private:

16 const char* msg;

17 };

18 class BusError

19 : public CommunicationError // Compliant - bus error is "checked"

20 {

21 public:

22 using CommunicationError::CommunicationError;

23 };

24 class Timeout : public std::runtime_error // Compliant - communication timeout

25 // is "checked"

26 {

27 public:

28 using std::runtime_error::runtime_error;

29 };

30 class PreconditionsError : public std::exception // Non-compliant - error on

31 // preconditions check should

32 // be "unchecked" but is

33 // defined to be "checked"

34 {

35 // Implementation

36 };

37 void fn1(std::uint8_t* buffer, std::uint8_t bufferLength) noexcept(false)

38 {

39 bool sentSuccessfully = true;

40

41 // ...

42 if (!sentSuccessfully)

43 {

44 throw CommunicationError(

45 "Could not send data"); // Checked exception thrown correctly

46 }

47 }

48 void fn2(std::uint8_t* buffer, std::uint8_t bufferLength) noexcept(false)

49 {

50 bool initSuccessfully = true;

51

52 if (!initSuccessfully)

53 {

54 throw PreconditionsError(); // An exception thrown on preconditions

55 // check failure should be "Unchecked", but

56 // PreconditionsError is "Checked"

57 }

58

59 // ...

60 bool sentSuccessfully = true;

197 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

61 bool isTimeout = false;

62

63 // ...

64 if (!sentSuccessfully)

65 {

66 throw BusError(

67 "Could not send data"); // Checked exception thrown correctly

68 }

69

70 // ...

71 if (isTimeout)

72 {

73 throw Timeout("Timeout reached"); // Checked exception thrown correctly

74 }

75 }

76 void fn3(std::uint8_t* buffer) noexcept(false)

77 {

78 bool isResourceBusy = false;

79

80 // ...

81 if (isResourceBusy)

82 {

83 throw std::runtime_error(

84 "Resource is busy now"); // Checked exception thrown correctly

85 }

86 }

See also

• Effective Java: Item 58 - Use checked exceptions for recoverable conditions and
runtime exceptions for programming errors.

Rule A15-0-6 (required, verification, non-automated)
An analysis shall be performed to analyze the failure modes of exception
handling. In particular, the following failure modes shall be analyzed: (a)
worst time execution time not existing or cannot be determined, (b) stack
not correctly unwound, (c) exception not thrown, other exception thrown,
wrong catch activated, (d) memory not available while exception handling.

Rationale

Note that the worst-case execution time and behavior of exception handling can be
hardware specific. This rule requires only that the exception handling is deterministic
in the sense that it has a deterministic behavior.

Note: this analysis can be performed by the compiler supplier or it can be done by the
project.

See also

• none

198 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://thefinestartist.com/effective-java/58
http://thefinestartist.com/effective-java/58

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A15-0-7 (required, implementation, partially automated)
Exception handling mechanism shall guarantee a deterministic worst-case
time execution time.

Rationale

Compilers, i.e. GCC or Clang, uses dynamic memory allocation in order to allocate
currently thrown exception in their exception handling mechanism implementations.
This causes a non-deterministic execution time and run-time allocation errors. A
possible working approach is to modify the memory allocator so that the dynamic
memory does not need to be obtained (from OS) when an exception is thrown.

A static code analysis can search for a use of dynamic memory in the implementation of
the try/catch mechanism of the compiler, to show if worst-case time cannot be ensured.

GCC compiler uses following gcc library’s functions to provide exception handling
mechanism routines:

• __cxa_allocate_exception

• __cxa_throw

• __cxa_free_exception

• __cxa_begin_catch

• __cxa_end_catch

• Specific stack unwinding functions, i.e. _Unwind_RaiseException,
_Unwind_Resume, _Unwind_DeleteException, etc.

Example

1 //% $Id: A15-0-7.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdlib>

3 #include <cstring>

4 struct __cxa_exception

5 {

6 // Exception’s structure implementation

7 };

8 extern "C" void fatalError(const char* msg)

9 {

10 // Reports an error and terminates the program

11 }

12

13 extern "C" void* __cxa_allocate_exception_dynamically(size_t thrownSize)

14 {

15 size_t size = thrownSize + sizeof(__cxa_exception);

16 __cxa_exception* buffer = static_cast<__cxa_exception*>(

17 malloc(size)); // Non-compliant - dynamic memory allocation used

18

19 if (!buffer)

20 {

199 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

21 fatalError("Not enough memory to allocate exception!");

22 }

23

24 memset(buffer, 0, sizeof(__cxa_exception));

25 return buffer + 1;

26 }

27 extern "C" void* static_malloc(size_t size)

28 {

29 void* mem = NULL;

30 // Allocates memory using static memory pool

31 return mem;

32 }

33 extern "C" void* __cxa_allocate_exception_statically(size_t thrownSize)

34 {

35 size_t size = thrownSize + sizeof(__cxa_exception);

36 __cxa_exception* buffer = static_cast<__cxa_exception*>(static_malloc(

37 size)); // Compliant - memory allocation on static memory pool used

38

39 if (!buffer)

40 {

41 fatalError("Not enough memory to allocate exception!");

42 }

43

44 memset(buffer, 0, sizeof(__cxa_exception));

45 return buffer + 1;

46 }

See also

• none

Rule A15-0-8 (required, implementation, non-automated)
A worst-case execution time (WCET) analysis shall be performed to
determine maximum execution time constraints of the software, covering in
particular the exceptions processing.

Rationale

Some systems require a guarantee that an action will be performed within predictable
time constraints. Such real-time systems are allowed to use exception handling
mechanism only if there is a tool support for accurate predicting such maximum time
boundaries.

“Before deciding that you cannot afford or don’t like exception-based error handling,
have a look at the alternatives; they have their own complexities and problems. Also, as
far as possible, measure before making claims about efficiency.” [C++ Core Guidelines]

See also

• MISRA C++ 2008 [6]: 15-0-1 (Document) Exceptions shall only be used for error
handling.

200 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• open-std.org [17]: ISO/IEC TR 18015:2006(E). Technical Report on C++
Performance

6.15.1 Throwing an exception

Rule A15-1-1 (required, implementation, automated)
Only instances of types derived from std::exception shall be thrown.

Rationale

If an object that inherits from std::exception is thrown, there’s a guarantee that it serves
to document the cause of an exception in an unified way. Also, "it makes your code
easier to learn and re-use, because it matches established conventions with which
programmers are already familiar.". [Effective Java 2nd Edition [14]]

This means that only standard library exceptions or user-defined exceptions that inherit
from std::exception base class shall be used for exceptions.

Note that direct instances of std::exception are not to be thrown as they can not be
unique.

Example

1 //% $Id: A15-1-1.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <memory>

3 #include <stdexcept>

4 class A

5 {

6 // Implementation

7 };

8 class MyException : public std::logic_error

9 {

10 public:

11 using std::logic_error::logic_error;

12 // Implementation

13 };

14 void f1()

15 {

16 throw - 1; // Non-compliant - integer literal thrown

17 }

18 void f2()

19 {

20 throw nullptr; // Non-compliant - null-pointer-constant thrown

21 }

22 void f3()

23 {

24 throw A(); // Non-compliant - user-defined type that does not inherit from

25 // std::exception thrown

26 }

27 void f4()

201 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

28 {

29 throw std::logic_error{

30 "Logic Error"}; // Compliant - std library exception thrown

31 }

32 void f5()

33 {

34 throw MyException{"Logic Error"}; // Compliant - user-defined type that

35 // inherits from std::exception thrown

36 }

37 void f6()

38 {

39 throw std::make_shared<std::exception>(

40 std::logic_error("Logic Error")); // Non-compliant - shared_ptr does

41 // not inherit from std::exception

42 }

43 void f7()

44 {

45 try

46 {

47 f6();

48 }

49

50 catch (std::exception& e) // An exception of

51 // std::shared_ptr<std::exception> type will not

52 // be caught here

53 {

54 // Handle an exception

55 }

56 catch (std::shared_ptr<std::exception>& e) // An exception of

57 // std::shared_ptr<std::exception>

58 // type will be caught here, but

59 // unable to access

60 // std::logic_error information

61 {

62 // Handle an exception

63 }

64 }

See also

• HIC++ v4.0 [8]: 15.1.1 Only use instances of std::exception for exceptions

• C++ Core Guidelines [10]: E.14: Use purpose-designed user-defined types as
exceptions (not built-in types)

• Effective Java 2nd Edition [14]: Item 60: Favor the use of standard exceptions

Rule A15-1-2 (required, implementation, automated)
An exception object shall not be a pointer.

202 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/15-1-1-only-use-instances-of-stdexception-for-exceptions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://jtechies.blogspot.com/2012/07/item-60-favor-use-of-standard.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

If an exception object of pointer type is thrown and that pointer refers to a dynamically
created object, then it may be unclear which function is responsible for destroying it,
and when. This may lead to memory leak.

If an exception object of pointer type is thrown and that pointer refers to an automatic
variable, it allows using a variable after its destruction, leading to undefined behavior.

This ambiguity does not exist if a copy of the object is thrown.

Example

1 //% $Id: A15-1-2.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <cstdint>

3 class A

4 {

5 // Implementation

6 };

7 void fn(std::int16_t i)

8 {

9 A a1;

10 A& a2 = a1;

11 A* a3 = new A;

12

13 if (i < 10)

14 {

15 throw a1; // Compliant - copyable object thrown

16 }

17

18 else if (i < 20)

19 {

20 throw A(); // Compliant - copyable object thrown

21 }

22

23 else if (i < 30)

24 {

25 throw a2; // Compliant - copyable object thrown

26 }

27

28 else if (i < 40)

29 {

30 throw & a1; // Non-compliant - pointer type thrown

31 }

32

33 else if (i < 50)

34 {

35 throw a3; // Non-compliant - pointer type thrown

36 }

37

38 else if (i < 60)

39 {

40 throw(*a3); // Compliant - memory leak occurs, violates other rules

203 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

41 }

42

43 else

44 {

45 throw new A; // Non-compliant - pointer type thrown

46 }

47 }

See also

• MISRA C++ 2008 [6]: 15-0-2 An exception object should not have pointer type.

• C++ Core Guidelines [10]: E.13: Never throw while being the direct owner of an
object

Rule M15-0-3 (required, implementation, automated)
Control shall not be transferred into a try or catch block using a goto or a
switch statement.

See MISRA C++ 2008 [6]

Rule M15-1-1 (required, implementation, automated)
The assignment-expression of a throw statement shall not itself cause an
exception to be thrown.

See MISRA C++ 2008 [6]

Rule M15-1-2 (required, implementation, automated)
NULL shall not be thrown explicitly.

See MISRA C++ 2008 [6]

Rule M15-1-3 (required, implementation, automated)
An empty throw (throw;) shall only be used in the compound statement of a
catch handler.

See MISRA C++ 2008 [6]

Rule A15-1-3 (advisory, implementation, automated)
All thrown exceptions should be unique.

Rationale

Defining unique exceptions in the project significantly simplifies debug process.

An exception is considered to be unique if at least one of the following conditions is
fulfilled:

204 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• The type of the exception does not occur in any other place in the project

• The error message (i.e. message itself, error code, etc.) of the exception does
not occur in any other place in the project

Example
1 //% $Id: A15-1-3.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <iostream>

3 #include <sstream>

4 #include <stdexcept>

5 #include <string>

6 static std::string composeMessage(const char* file,

7 const char* func,

8 std::int32_t line,

9 const std::string& message) noexcept

10 {

11 std::stringstream s;

12 s << "(" << file << ", " << func << ":" << line << "): " << message;

13 return s.str();

14 }

15 void f1()

16 {

17 // ...

18 throw std::logic_error("Error");

19 }

20 void f2()

21 {

22 // ...

23 throw std::logic_error("Error"); // Non-compliant - both exception type and

24 // error message are not unique

25 }

26 void f3()

27 {

28 // ...

29 throw std::invalid_argument(

30 "Error"); // Compliant - exception type is unique

31 }

32 void f4() noexcept(false)

33 {

34 // ...

35 throw std::logic_error("f3(): preconditions were not met"); // Compliant -

36 // error

37 // message is

38 // unique

39 }

40 void f5() noexcept(false)

41 {

42 // ...

43 throw std::logic_error(composeMessage(

44 __FILE__,

45 __func__,

46 __LINE__,

205 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

47 "postconditions were not met")); // Compliant - error message is unique

48 }

49 void f6() noexcept

50 {

51 try

52 {

53 f1();

54 f2();

55 f3();

56 }

57

58 catch (std::invalid_argument& e)

59 {

60 std::cout << e.what() << ’\n’; // Only f3() throws this type of

61 // exception, it is easy to deduce which

62 // function threw

63 }

64

65 catch (std::logic_error& e)

66 {

67 std::cout << e.what() << ’\n’; // f1() and f2() throw exactly the same

68 // exceptions, unable to deduce which

69 // function threw

70 }

71

72 try

73 {

74 f4();

75 f5();

76 }

77

78 catch (std::logic_error& e)

79 {

80 std::cout << e.what() << ’\n’; // Debugging process simplified, because

81 // of unique error message it is known

82 // which function threw

83 }

84 }

See also

• Effective Java 2nd Edition [14]: Item 63: Include failure-capture information in
detail messages

Rule A15-1-4 (required, implementation, partially automated)
If a function exits with an exception, then before a throw, the function shall
place all objects/resources that the function constructed in valid states or it
shall delete them.

206 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://jtechies.blogspot.com/2012/07/item-63-include-failure-capture.html
http://jtechies.blogspot.com/2012/07/item-63-include-failure-capture.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

If the only handler to dynamically allocated memory or system resource (e.g. file, lock,
network connection or thread) goes out of scope due to throwing an exception, memory
leak occurs. Memory leaks lead to performance degradation, security violations and
software crashes.

Allocated memory or system resource can be released by explicit call to resource
deinitialization or memory deallocation function (such as operator delete), before each
return/try/break/continue statement. However, this solution is error prone and difficult
to maintain.

The recommended way of releasing dynamically allocated objects and resources is
to follow RAII ("‘Resource Acquisition Is Initialization"’) design pattern, also known as
Scope-Bound Resource Management or “Constructor Acquires, Destructor Releases”
(CADRe). It allows to bind the life cycle of the resource to the lifetime of a scope-bound
object. It guarantees that resources are properly deinitialized and released when data
flow reaches the end of the scope.

Examples of RAII design pattern that significantly simplifies releasing
objects/resources on throwing an exception are C++ smart pointers: std::unique_ptr
and std::shared_ptr.

Example

1 //% $Id: A15-1-4.cpp 272338 2017-03-28 08:15:01Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4 #include <stdexcept>

5 extern std::uint32_t f1();

6 void fVeryBad() noexcept(false)

7 {

8 std::logic_error* e = new std::logic_error("Logic Error 1");

9 // ...

10 std::uint32_t i = f1();

11

12 if (i < 10)

13 {

14 throw(*e); // Non-compliant - fVeryBad() is not able to clean-up

15 // allocated memory

16 }

17

18 // ...

19 delete e;

20 }

21 void fBad() noexcept(false)

22 {

23 std::int32_t* x = new std::int32_t(0);

24 // ...

25 std::uint32_t i = f1();

26

27 if (i < 10)

207 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

28 {

29 throw std::logic_error("Logic Error 2"); // Non-compliant - exits from

30 // fBad() without cleaning-up

31 // allocated resources and

32 // causes a memory leak

33 }

34

35 else if (i < 20)

36 {

37 throw std::runtime_error("Runtime Error 3"); // Non-compliant - exits

38 // from fBad() without

39 // cleaning-up allocated

40 // resources and causes a

41 // memory leak

42 }

43

44 // ...

45 delete x; // Deallocates claimed resource only in the end of fBad() scope

46 }

47 void fGood() noexcept(false)

48 {

49 std::int32_t* y = new std::int32_t(0);

50 // ...

51 std::uint32_t i = f1();

52

53 if (i < 10)

54 {

55 delete y; // Deletes allocated resource before throwing an exception

56 throw std::logic_error("Logic Error 4"); // Compliant - deleting y

57 // variable before exception

58 // leaves the fGood() scope

59 }

60

61 else if (i < 20)

62 {

63 delete y; // Deletes allocated resource before throwing an exception

64 throw std::runtime_error("Runtime Error 5"); // Compliant - deleting y

65 // variable before

66 // exception leaves the

67 // fGood() scope

68 }

69

70 else if (i < 30)

71 {

72 delete y; // Deletes allocated resource before throwing an exception

73 // again, difficult to maintain

74 throw std::invalid_argument(

75 "Invalid Argument 1"); // Compliant - deleting

76 // y variable before

77 // exception leaves the

78 // fGood() scope

208 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

79 }

80

81 // ...

82 delete y; // Deallocates claimed resource also in the end of fGood() scope

83 }

84 void fBest() noexcept(false)

85 {

86 std::unique_ptr<std::int32_t> z = std::make_unique<std::int32_t>(0);

87 // ...

88 std::uint32_t i = f1();

89

90 if (i < 10)

91 {

92 throw std::logic_error("Logic Error 6"); // Compliant - leaving the

93 // fBest() scope causes

94 // deallocation of all

95 // automatic variables, unique_ptrs, too

96 }

97

98 else if (i < 20)

99 {

100 throw std::runtime_error("Runtime Error 3"); // Compliant - leaving the

101 // fBest() scope causes

102 // deallocation of all

103 // automatic variables,

104 // unique_ptrs, too

105 }

106

107 else if (i < 30)

108 {

109 throw std::invalid_argument(

110 "Invalid Argument 2"); // Compliant - leaving the fBest() scope

111 // causes deallocation of all automatic

112 // variables, unique_ptrs,

113 // too

114 }

115

116 // ...

117 // z is deallocated automatically here, too

118 }

119 class CRaii // Simple class that follows RAII pattern

120 {

121 public:

122 CRaii(std::int32_t* pointer) noexcept : x(pointer) {}

123 ~CRaii()

124 {

125 delete x;

126 x = nullptr;

127 }

128

129 private:

209 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

130 std::int32_t* x;

131 };

132 void fBest2() noexcept(false)

133 {

134 CRaii a1(new std::int32_t(10));

135 // ...

136 std::uint32_t i = f1();

137

138 if (i < 10)

139 {

140 throw std::logic_error("Logic Error 7"); // Compliant - leaving the

141 // fBest2() scope causes a1

142 // variable deallocation

143 // automatically

144 }

145 else if (i < 20)

146 {

147 throw std::runtime_error("Runtime Error 4"); // Compliant - leaving the

148 // fBest2() scope causes

149 // a1 variable

150 // deallocation

151 // automatically

152 }

153 else if (i < 30)

154 {

155 throw std::invalid_argument(

156 "Invalid Argument 3"); // Compliant - leaving the fBest2() scope

157 // causes a1 variable deallocation

158 // automatically

159 }

160

161 // ...

162 // a1 is deallocated automatically here, too

163 }

See also

• SEI CERT C++ [9]: ERR57-CPP. Do not leak resources when handling
exceptions

• C++ Core Guidelines [10]: E.6: Use RAII to prevent leaks.

Rule A15-1-5 (required, implementation, non-automated)
Exceptions shall not be thrown across execution boundaries.

Rationale

An execution boundary is the delimitation between code compiled by differing
compilers, including different versions of a compiler produced by the same vendor.
For instance, a function may be declared in a header file but defined in a library that is
loaded at runtime. The execution boundary is between the call site in the executable

210 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR57-CPP.+Do+not+leak+resources+when+handling+exceptions
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR57-CPP.+Do+not+leak+resources+when+handling+exceptions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-raii

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

and the function implementation in the library. Such boundaries are also called ABI
(application binary interface) boundaries because they relate to the interoperability of
application binaries.

Throwing an exception across an execution boundary requires that both sides of the
execution boundary use the same ABI for exception handling, which may be difficult to
ensure.

Exception

If it can be ensured that the execution boundaries use the same ABI for exception
handling routines on both sides, then throwing an exception across these execution
boundaries is allowed.

See also

• SEI CERT C++ [9]: ERR59-CPP. Do not throw an exception across execution
boundaries

6.15.2 Constructors and destructors

Rule A15-2-1 (required, implementation, automated)
Constructors that are not noexcept shall not be invoked before program
startup.

Rationale

Before the program starts executing the body of main function, it is in a start-up phase,
constructing and initializing static objects. There is nowhere an exception handler can
be placed to catch exceptions thrown during this phase, so if an exception is thrown it
leads to the program being terminated in an implementation-defined manner.

Such errors may be more difficult to find because an error message can not be logged,
due to lack of exception handling mechanism during static initialization.

Example
1 //% $Id: A15-2-1.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 class A

5 {

6 public:

7 A() noexcept : x(0)

8 {

9 // ...

10 }

11 explicit A(std::int32_t n) : x(n)

12 {

13 // ...

14 throw std::runtime_error("Unexpected error");

211 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR59-CPP.+Do+not+throw+an+exception+across+execution+boundaries
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR59-CPP.+Do+not+throw+an+exception+across+execution+boundaries

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

15 }

16 A(std::int32_t i, std::int32_t j) noexcept : x(i + j)

17 {

18 try

19 {

20 // ...

21 throw std::runtime_error("Error");

22 // ...

23 }

24

25 catch (std::exception& e)

26 {

27 }

28 }

29

30 private:

31 std::int32_t x;

32 };

33 static A a1; // Compliant - default constructor of type A is noexcept

34 static A a2(5); // Non-compliant - constructor of type A throws, and the

35 // exception will not be caught by the handler in main function

36 static A a3(5, 10); // Compliant - constructor of type A is noexcept, it

37 // handles exceptions internally

38 int main(int, char**)

39 {

40 try

41 {

42 // program code

43 }

44 catch (...)

45 {

46 // Handle exceptions

47 }

48

49 return 0;

50 }

See also

• SEI CERT C++ [9]: ERR51-CPP. Handle all exceptions.

Rule A15-2-2 (required, implementation, partially automated)
If a constructor is not noexcept and the constructor cannot finish object
initialization, then it shall deallocate the object’s resources and it shall throw
an exception.

Rationale

Leaving the constructor with invalid object state leads to undefined behavior.

Example

212 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR58-CPP.+Handle+all+exceptions+thrown+before+main%28%29+begins+executing

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 //% $Id: A15-2-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <fstream>

3 #include <stdexcept>

4 class A

5 {

6 public:

7 A() = default;

8 };

9 class C1

10 {

11 public:

12 C1()

13 noexcept(false)

14 : a1(new A), a2(new A) // Non-compliant - if a2 memory allocation

15 // fails, a1 will never be deallocated

16 {

17 }

18 C1(A* pA1, A* pA2)

19 noexcept : a1(pA1), a2(pA2) // Compliant - memory allocated outside of C1

20 // constructor, and no exceptions can be thrown

21 {

22 }

23

24 private:

25 A* a1;

26 A* a2;

27 };

28 class C2

29 {

30 public:

31 C2() noexcept(false) : a1(nullptr), a2(nullptr)

32 {

33 try

34 {

35 a1 = new A;

36 a2 = new A; // If memory allocation for a2 fails, catch-block will

37 // deallocate a1

38 }

39

40 catch (std::exception& e)

41 {

42 throw; // Non-compliant - whenever a2 allocation throws an

43 // exception, a1 will never be deallocated

44 }

45 }

46

47 private:

48 A* a1;

49 A* a2;

50 };

51 class C3

213 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

52 {

53 public:

54 C3() noexcept(false) : a1(nullptr), a2(nullptr), file("./filename.txt")

55 {

56 try

57 {

58 a1 = new A;

59 a2 = new A;

60

61 if (!file.good())

62 {

63 throw std::runtime_error("Could not open file.");

64 }

65 }

66

67 catch (std::exception& e)

68 {

69 delete a1;

70 a1 = nullptr;

71 delete a2;

72 a2 = nullptr;

73 file.close();

74 throw; // Compliant - all resources are deallocated before the

75 // constructor exits with an exception

76 }

77 }

78

79 private:

80 A* a1;

81 A* a2;

82 std::ofstream file;

83 };

84 class C4

85 {

86 public:

87 C4() : x(0), y(0)

88 {

89 // Does not need to check preconditions here - x and y initialized with

90 // correct values

91 }

92 C4(std::int32_t first, std::int32_t second)

93 noexcept(false) : x(first), y(second)

94 {

95 checkPreconditions(x,

96 y); // Compliant - if constructor failed to create a

97 // valid object, then throw an exception

98 }

99 static void checkPreconditions(std::int32_t x,

100 std::int32_t y) noexcept(false)

101 {

102 if (x < 0 || x > 1000)

214 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

103 {

104 throw std::invalid_argument(

105 "Preconditions of class C4 were not met");

106 }

107

108 else if (y < 0 || y > 1000)

109 {

110 throw std::invalid_argument(

111 "Preconditions of class C4 were not met");

112 }

113 }

114

115 private:

116 std::int32_t x; // Acceptable range: <0; 1000>

117 std::int32_t y; // Acceptable range: <0; 1000>

118 };

See also

• C++ Core Guidelines [10]: C.42: If a constructor cannot construct a valid object,
throw an exception

6.15.3 Handling an exception

Rule M15-3-1 (required, implementation, automated)
Exceptions shall be raised only after start-up and before termination.

See MISRA C++ 2008 [6]

Rule A15-3-1 (advisory, implementation, automated)
Unchecked exceptions should be handled only in main or thread’s main
functions.

Rationale

Unchecked exceptions (e.g. bad_alloc, out_of_range, length_error, invalid_argument)
either are a consequence of faulty logic within the program or are unpreventable and
the program can not recover from them with meaningful action. In this case, propagate
the exception up the call tree to the main (or thread’s main) function where one common
handler will be executed.

Exception

This rule does not apply to C++ Standard Library, as it can provide different error
handling mechanisms that depend on user input or usage.

Example

1 //% $Id: A15-3-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

215 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2 #include <cstdint>

3 #include <stdexcept>

4 class OutOfMemory : public std::logic_error // Unchecked exception

5 {

6 public:

7 using std::logic_error::logic_error;

8 };

9 void f1() noexcept(false)

10 {

11 // ...

12 throw OutOfMemory("Not enough memory");

13 }

14 void f2() noexcept

15 {

16 try

17 {

18 f1();

19 }

20 catch (OutOfMemory& e) // Non-compliant - program is not able to handle an

21 // OutOfMemory error in a meaningful way, the error

22 // will still exist

23 {

24 // Handle an exception

25 }

26 }

27 void f3() noexcept(false)

28 {

29 // ...

30 try

31 {

32 // ...

33 f1();

34 }

35 catch (OutOfMemory& e)

36 {

37 // Nothing to do, just re-throw

38 throw; // Non-compliant - it is inefficient to catch and re-throw an

39 // error that can not be handled in f3()

40 }

41 }

42 void f4() noexcept(false)

43 {

44 // ...

45 f1(); // Compliant - OutOfMemory error can not be handled in f4()

46 // ...

47 }

48 int main(int, char**)

49 {

50 try

51 {

52 f4();

216 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

53 }

54 catch (OutOfMemory& e) // Compliant - OutOfMemory caught in main() function

55 // so the program can clean-up and exit correctly

56 {

57 // Report the error and exit from the program correctly

58 }

59

60 return 0;

61 }

See also

• none

Rule A15-3-2 (required, implementation, non-automated)
If a function throws a checked exception, it shall be handled when
meaningful actions can be taken, otherwise it shall be propagated.

Rationale

Provide checked exception handlers only for functions that actually are able to take
recovery actions. Implementing meaningless exception handlers that only re-throw
caught exception results in a code that is inefficient and difficult to maintain.

Example
1 //% $Id: A15-3-2.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdint>

3 #include <iostream>

4 #include <stdexcept>

5 class CommunicationError : public std::exception

6 {

7 // Implementation

8 };

9 /// @throw CommunicationError Exceptional communication errors

10 extern void send(std::uint8_t* buffer) noexcept(false);

11 void sendData1(std::uint8_t* data) noexcept(false)

12 {

13 try

14 {

15 send(data);

16 }

17

18 catch (CommunicationError& e)

19 {

20 std::cerr << "Communication error occured" << std::endl;

21 throw; // Non-compliant - exception is not handled, just re-thrown

22 }

23 }

24 extern void busRestart() noexcept;

25 extern void bufferClean() noexcept;

26 void sendData2(std::uint8_t* data) noexcept(false)

217 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

27 {

28 try

29 {

30 send(data);

31 }

32

33 catch (CommunicationError& e)

34 {

35 std::cerr << "Communication error occured" << std::endl;

36 bufferClean();

37 throw; // Compliant - exception is partially handled and re-thrown

38 }

39 }

40 void f1() noexcept

41 {

42 std::uint8_t* buffer = nullptr;

43

44 // ...

45 try

46 {

47 sendData2(buffer);

48 }

49

50 catch (CommunicationError& e)

51 {

52 std::cerr << "Communication error occured" << std::endl;

53 busRestart();

54 // Compliant - including SendData2() exception handler, exception is now

55 // fully handled

56 }

57 }

58 void sendData3(std::uint8_t* data) noexcept

59 {

60 try

61 {

62 send(data);

63 }

64

65 catch (CommunicationError& e)

66 {

67 std::cerr << "Communication error occured" << std::endl;

68 bufferClean();

69 busRestart();

70 // Compliant - exception is fully handled

71 }

72 }

See also

• none

218 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A15-3-3 (required, implementation, automated)
There shall be at least one exception handler to catch all otherwise
unhandled exceptions.

Rationale

If a program throws an unhandled exception in main function, as well as in init thread
function, the program terminates in an implementation-defined manner. In particular,
it is implementation-defined whether the call stack is unwound, before termination, so
the destructors of any automatic objects may or may not be executed. By enforcing
the provision of a “last-ditch catch-all”, the developer can ensure that the program
terminates in a consistent manner.

Note that the objective of the previous rule is that a program should catch all exceptions
that it is expected to throw. This rule’s objective is to ensure that exceptions that were
not expected are also caught.

Example

1 //% $Id: A15-3-3.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <stdexcept>

3 int mainGood(int, char**) // Compliant

4 {

5 try

6 {

7 // program code

8 }

9 catch (std::runtime_error& e)

10 {

11 // Handle runtime errors

12 }

13 catch (std::logic_error& e)

14 {

15 // Handle logic errors

16 }

17 catch (std::exception& e)

18 {

19 // Handle all expected exceptions

20 }

21 catch (...)

22 {

23 // Handle all unexpected exceptions

24 }

25

26 return 0;

27 }

28 int mainBad(int,

29 char**) // Non-compliant - unexpected exceptions are not caught

30 {

31 try

32 {

219 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

33 // program code

34 }

35 catch (std::runtime_error& e)

36 {

37 // Handle runtime errors

38 }

39 catch (std::logic_error& e)

40 {

41 // Handle logic errors

42 }

43 catch (std::exception& e)

44 {

45 // Handle all expected exceptions

46 }

47

48 return 0;

49 }

50 void threadMainGood() // Compliant

51 {

52 try

53 {

54 // thread code

55 }

56 catch (std::exception& e)

57 {

58 // Handle all expected exception

59 }

60 catch (...)

61 {

62 // Handle all unexpected exception

63 }

64 }

65 void threadMainBad() // Non-compliant - unexpected exceptions are not caught

66 {

67 try

68 {

69 // thread code

70 }

71 catch (std::exception& e)

72 {

73 // Handle all expected exceptions

74 }

75

76 // Uncaught unexpected exception will cause an immediate program termination

77 }

See also

• MISRA C++ 2008 [6]: 15-3-2 There should be at least one exception handler to
catch all otherwise unhandled exceptions.

• SEI CERT C++ [9]: ERR51-CPP. Handle all exceptions

220 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR51-CPP.+Handle+all+exceptions

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• Effective Java 2nd Edition [14]: Item 65: Don’t ignore exceptions

Rule A15-3-4 (required, implementation, non-automated)
Catch-all (ellipsis and std::exception) handlers shall be used only in (a)
main, (b) task main functions, (c) in functions that are supposed to isolate
independent components and (d) when calling third-party code that uses
exceptions not according to AUTOSAR C++14 guidelines.

Rationale

Catching an exception through catch-all handlers does not provide any detailed
information about caught exception. This does not allow to take meaningful actions
to recover from an exception other than to re-throw it. This is inefficient and results in
code that is difficult to maintain.

Example

1 //% $Id: A15-3-4.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <stdexcept>

3 #include <thread>

4 extern std::int32_t fn(); // Prototype of external third-party library function

5 void f1() noexcept(false)

6 {

7 try

8 {

9 std::int32_t ret = fn();

10 // ...

11 }

12

13 // ...

14 catch (...) // Compliant

15 {

16 // Handle all unexpected exceptions from fn() function

17 }

18 }

19 void f2() noexcept(false)

20 {

21 std::int32_t ret =

22 fn(); // Non-compliant - can not be sure whether fn() throws or not

23

24 if (ret < 10)

25 {

26 throw std::underflow_error("Error");

27 }

28

29 else if (ret < 20)

30 {

31 // ...

32 }

33 else if (ret < 30)

34 {

221 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://jtechies.blogspot.com/2012/07/item-65-dont-ignore-exceptions.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

35 throw std::overflow_error("Error");

36 }

37

38 else

39 {

40 throw std::range_error("Error");

41 }

42 }

43 void f3() noexcept(false)

44 {

45 try

46 {

47 f2();

48 }

49

50 catch (std::exception& e) // Non-compliant - caught exception is too

51 // general, no information which error occured

52 {

53 // Nothing to do

54 throw;

55 }

56 }

57 void f4() noexcept(false)

58 {

59 try

60 {

61 f3();

62 }

63

64 catch (...) // Non-compliant - no information about the exception

65 {

66 // Nothing to do

67 throw;

68 }

69 }

70 class ExecutionManager

71 {

72 public:

73 ExecutionManager() = default;

74 void execute() noexcept(false)

75 {

76 try

77 {

78 f3();

79 }

80

81 // ...

82 catch (std::exception& e) // Compliant

83 {

84 // Handle all expected exceptions

85 }

222 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

86 catch (...) // Compliant

87 {

88 // Handle all unexpected exceptions

89 }

90 }

91 };

92 void threadMain() noexcept

93 {

94 try

95 {

96 f3();

97 }

98

99 // ...

100 catch (std::exception& e) // Compliant

101 {

102 // Handle all expected exceptions

103 }

104 catch (...) // Compliant

105 {

106 // Handle all unexpected exceptions

107 }

108 }

109 int main(int, char**)

110 {

111 try

112 {

113 ExecutionManager execManager;

114 execManager.execute();

115 // ...

116 std::thread t(&threadMain);

117 // ...

118 f4();

119 }

120

121 // ...

122 catch (std::exception& e) // Compliant

123 {

124 // Handle all expected exceptions

125 }

126 catch (...) // Compliant

127 {

128 // Handle all unexpected exceptions

129 }

130

131 return 0;

132 }

See also

• none

223 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M15-3-3 (required, implementation, automated)
Handlers of a function-try-block implementation of a class constructor or
destructor shall not reference non-static members from this class or its
bases.

See MISRA C++ 2008 [6]

Rule M15-3-4 (required, implementation, automated)
Each exception explicitly thrown in the code shall have a handler of a
compatible type in all call paths that could lead to that point.

See MISRA C++ 2008 [6]

Rule A15-3-5 (required, implementation, automated)
A class type exception shall be caught by reference or const reference.

Rationale

If a class type exception object is caught by value, slicing occurs. That is, if the
exception object is of a derived class and is caught as the base, only the base class’s
functions (including virtual functions) can be called. Also, any additional member data
in the derived class cannot be accessed. If the exception is caught by reference or
const reference, slicing does not occur.

Example

1 //% $Id: A15-3-5.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <iostream>

3 #include <stdexcept>

4 class Exception : public std::runtime_error

5 {

6 public:

7 using std::runtime_error::runtime_error;

8 const char* what() const noexcept(true) override

9 {

10 return "Exception error message";

11 }

12 };

13 void fn()

14 {

15 try

16 {

17 // ...

18 throw std::runtime_error("Error");

19 // ...

20 throw Exception("Error");

21 }

22

23 catch (const std::logic_error& e) // Compliant - caught by const reference

224 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 {

25 // Handle exception

26 }

27 catch (std::runtime_error& e) // Compliant - caught by reference

28 {

29 std::cout << e.what() << "\n"; // "Error" or "Exception error message"

30 // will be printed, depending upon the

31 // actual type of thrown object

32 throw e; // The exception re-thrown is of its original type

33 }

34

35 catch (

36 std::runtime_error

37 e) // Non-compliant - derived types will be caught as the base type

38 {

39 std::cout

40 << e.what()

41 << "\n"; // Will always call what() method from std::runtime_error

42 throw e; // The exception re-thrown is of the std::runtime_error type,

43 // not the original exception type

44 }

45 }

See also

• MISRA C++ 2008 [6]: 15-3-5 A class type exception shall always be caught by
reference.

• SEI CERT C++ [9]: ERR61-CPP. Catch exceptions by lvalue reference

• C++ Core Guidelines [10]: E.15: Catch exceptions from a hierarchy by reference

Rule M15-3-6 (required, implementation, automated)
Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the
handlers shall be ordered most-derived to base class.

See MISRA C++ 2008 [6]

Rule M15-3-7 (required, implementation, automated)
Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

See MISRA C++ 2008 [6]

6.15.4 Exception specifications

225 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR61-CPP.+Catch+exceptions+by+lvalue+reference
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A15-4-1 (required, implementation, automated)
Dynamic exception-specification shall not be used.

Rationale

This feature was deprecated in the 2011 C++ Language Standard (See: Deprecating
Exception Specifications).

Main issues with dynamic exception specifications are:

1. Run-time checking: Exception specifications are checked at runtime, so the
program does not guarantee that all exceptions will be handled. The run-time
failure mode does not lend itself to recovery.

2. Run-time overhead: Run-time checking requires the compiler to produce
additional code that hampers optimizations.

3. Unusable in generic code: It is not possible to know what types of exceptions
may be thrown from templates arguments operations, so a precise exception
specification cannot be written.

In place of dynamic exception-specification, use noexcept specification that allows to
declare whether a function throws or does not throw exceptions.

Example

1 //% $Id: A15-4-1.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <stdexcept>

3 void f1() noexcept; // Compliant - note that noexcept is the same as

4 // noexcept(true)

5 void f2() throw(); // Non-compliant - dynamic exception-specification is

6 // deprecated

7 void f3() noexcept(false); // Compliant

8 void f4() throw(std::runtime_error); // Non-compliant - dynamic

9 // exception-specification is deprecated

10 void f5() throw(

11 ...); // Non-compliant - dynamic exception-specification is deprecated

12 template <class T>

13 void f6() noexcept(noexcept(T())); // Compliant

See also

• C++ Core Guidelines [10]: E.12: Use noexcept when exiting a function because
of a throw is impossible or unacceptable

• open-std.org [17]: open std Deprecating Exception Specifications

• mill22: A Pragmatic Look at Exception Specifications

226 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html
http://www.gotw.ca/publications/mill22.htm

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A15-4-2 (required, implementation, automated)
If a function is declared to be noexcept, noexcept(true) or noexcept(<true
condition>), then it shall not exit with an exception.

Rationale

If a function declared to be noexcept, noexcept(true) or noexcept(true condition) throws
an exception, then std::terminate() is called immediately. It is implementation-defined
whether the call stack is unwound before std::terminate() is called.

To ensure that the rule is not violated, if function’s noexcept specification can not be
determined, then always declare it to be noexcept(false).

Example
1 //% $Id: A15-4-2.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <stdexcept>

3 // library.h

4 void libraryFunc();

5 // project.cpp

6 void f1() noexcept

7 {

8 // ...

9 throw std::runtime_error("Error"); // Non-compliant - f1 declared to be

10 // noexcept, but exits with exception.

11 // This leads to std::terminate() call

12 }

13 void f2() noexcept(true)

14 {

15 try

16 {

17 // ...

18 throw std::runtime_error(

19 "Error"); // Compliant - exception will not leave f2

20 }

21 catch (std::runtime_error& e)

22 {

23 // Handle runtime error

24 }

25 }

26 void f3() noexcept(false)

27 {

28 // ...

29 throw std::runtime_error("Error"); // Compliant

30 }

31 void f4() noexcept(

32 false) // Compliant - no information whether library_func() throws or not

33 {

34 libraryFunc();

35 }

See also

227 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• MISRA C++ 2008 [6]: 15-5-3 The terminate() function shall not be called implicitly.

• HIC++ v4.0 [8]: 15.3.2 Ensure that a program does not result in a call to
std::terminate

• SEI CERT C++ [9]: ERR50-CPP. Do not abruptly terminate the program

Rule A15-4-3 (required, implementation, automated)
Function’s noexcept specification shall be either identical or more restrictive
across all translation units and all overriders.

Rationale

If any declaration of a function has a noexcept specification, other declarations of
the same function have to specify either the same or more restrictive noexcept-
specification. The same restriction apply to all overriders of a member function.

Example

1 //% $Id: A15-4-3.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 // f1.hpp

3 void fn() noexcept;

4 // f1.cpp

5 // #include <f1.hpp>

6 void fn() noexcept // Compliant

7 {

8 // Implementation

9 }

10 // f2.cpp

11 // #include <f1.hpp>

12 // void fn() noexcept(false) // Non-compliant - different exception specifier

13 // {

14 // Implementation

15 // }

16 class A

17 {

18 public:

19 void f() noexcept;

20 void g() noexcept(false);

21 virtual void v1() noexcept = 0;

22 virtual void v2() noexcept(false) = 0;

23 };

24 void A::f() noexcept // Compliant

25 // void A::f() noexcept(false) // Non-compliant - different exception specifier

26 // than in declaration

27 {

28 // Implementation

29 }

30 void A::g() noexcept(false) // Compliant

31 // void A::g() noexcept // Non-compliant - different exception specifier than

32 // in declaration

33 {

228 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR50-CPP.+Do+not+abruptly+terminate+the+program

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

34 // Implementation

35 }

36 class B : public A

37 {

38 public:

39 void v1() noexcept override // Compliant

40 // void v1() noexcept(false) override // Non-compliant - looser exception

41 // specifier in derived method,

42 // non-compilable

43 {

44 // Implementation

45 }

46 void v2() noexcept override // Compliant

47 {

48 // Implementation

49 }

50 };

See also

• none

Rule A15-4-4 (required, implementation, automated)
A declaration of non-throwing function shall contain noexcept specification.

Rationale

Noexcept specification is a method for a programmer to inform the compiler whether
or not a function should throw exceptions. The compiler can use this information to
enable certain optimizations on non-throwing functions as well as enable the noexcept
operator, which can check at compile time if a particular expression is declared to throw
any exceptions.

Noexcept specification is also a method to inform other programmers that a function
does not throw any exceptions.

A non-throwing function needs to declare noexcept specifier. A function that may
or may not throw exceptions depending on a template argument, needs to explicitly
specify its behavior using noexcept(<condition>) specifier.

Note that it is assumed that a function which does not contain explicit noexcept
specification throws exceptions, similarly to functions that declare noexcept(false)
specifier.

Example

1 //% $Id: A15-4-4.cpp 271715 2017-03-23 10:13:51Z piotr.tanski $

2 #include <iostream>

3 #include <stdexcept>

4 void f1(); // Compliant - f1, without noexcept specification, declares to throw

5 // exceptions implicitly

229 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6 void f2() noexcept; // Compliant - f2 does not throw exceptions

7 void f3() noexcept(true); // Compliant - f3 does not throw exceptions

8 void f4() noexcept(false); // Compliant - f4 declares to throw exceptions

9 void f5() noexcept // Compliant - f5 does not throw exceptions

10 {

11 try

12 {

13 f1(); // Exception handling needed, f1 has no noexcept specification

14 }

15

16 catch (std::exception& e)

17 {

18 // Handle exceptions

19 }

20

21 f2(); // Exception handling not needed, f2 is noexcept

22 f3(); // Exception handling not needed, f3 is noexcept(true)

23

24 try

25 {

26 f4(); // Exception handling needed, f4 is noexcept(false)

27 }

28

29 catch (std::exception& e)

30 {

31 // Handle exceptions

32 }

33 }

34 template <class T>

35 void f6() noexcept(noexcept(T())); // Compliant - function f6() may be

36 // noexcept(true) or noexcept(false)

37 // depending on constructor of class T

38 template <class T>

39 class A

40 {

41 public:

42 A() noexcept(noexcept(T())) // Compliant - constructor of class A may be

43 // noexcept(true) or noexcept(false) depending on

44 // constructor of class T

45 {

46 }

47 };

48 class C1

49 {

50 public:

51 C1()

52 noexcept(

53 true) // Compliant - constructor of class C1 does not throw exceptions

54 {

55 }

56 // ...

230 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

57 };

58 class C2

59 {

60 public:

61 C2() // Compliant - constructor of class C2 throws exceptions

62 {

63 }

64 // ...

65 };

66 void f7() noexcept // Compliant - f7 does not throw exceptions

67 {

68 std::cout << noexcept(A<C1>()) << ’\n’; // prints ’1’ - constructor of

69 // A<C1> class is noexcept(true)

70 // because constructor of C1 class

71 // is declared to be noexcept(true)

72 std::cout << noexcept(A<C2>()) << ’\n’; // prints ’0’ - constructor of

73 // A<C2> class is noexcept(false)

74 // because constructor of C2 class

75 // has no noexcept specifier

76 }

See also

• none

Rule A15-4-5 (required, implementation, automated)
Checked exceptions that could be thrown from a function shall be specified
together with the function declaration using the “@throw ExceptionName
description” syntax, and they shall be identical in all function declarations
and for all its overriders.

Rationale

In C++ language, all exceptions are unchecked, because the compiler does not force
to either handle the exception or specify it. Because dynamic-exception specification is
obsolete and error prone, an alternative mechanism of specifying checked exceptions
using C++ comments along with function declarations is used. It is a concept that is
based on Java exception handling mechanism.

When analyzing a given function f, a static code analysis needs to analyze functions
invoked by f and analyze if they throw any checked exceptions that are not caught by f
and not listed by f in the function comment.

Exception

Within generic code, it is not generally possible to know what types of exceptions may
be thrown from operations on template arguments, so a precise exception specification
cannot be written. Therefore, this rule does not apply for templates.

Example
1 //% $Id: A15-4-5.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

231 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2 #include <cstdint>

3 #include <stdexcept>

4 class CommunicationError : public std::exception

5 {

6 // Implementation

7 };

8 class BusError : public CommunicationError

9 {

10 // Implementation

11 };

12 class Timeout : public std::runtime_error

13 {

14 public:

15 using std::runtime_error::runtime_error;

16 // Implementation

17 };

18 /// @throw CommunicationError Communication error

19 /// @throw BusError Bus error

20 /// @throw Timeout On send timeout exception

21 void send1(

22 std::uint8_t* buffer,

23 std::uint8_t bufferLength) noexcept(false) // Compliant - All and only

24 // those checked exceptions

25 // that can be thrown are

26 // specified

27 {

28 // ...

29 throw CommunicationError();

30 // ...

31 throw BusError();

32 // ...

33 throw Timeout("Timeout reached");

34 // ...

35 }

36 /// @throw CommunicationError Communication error

37 void send2(

38 std::uint8_t* buffer,

39 std::uint8_t bufferLength) noexcept(false) // Non-compliant - checked

40 // exceptions that can be

41 // thrown are missing from

42 // specification

43 {

44 // ...

45 throw CommunicationError();

46 // ...

47 throw Timeout("Timeout reached");

48 // ...

49 }

50 class MemoryPartitioningError : std::exception

51 {

52 // Implementation

232 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

53 };

54 /// @throw CommunicationError Communication error

55 /// @throw BusError Bus error

56 /// @throw Timeout On send timeout exception

57 /// @throw MemoryPartitioningError Memory partitioning error prevents message

58 /// from being sent.

59 void send3(

60 std::uint8_t* buffer,

61 std::uint8_t bufferLength) noexcept(false) // Non-compliant - additional

62 // checked exceptions are

63 // specified

64 {

65 // ...

66 throw CommunicationError();

67 // ...

68 throw Timeout("Timeout reached");

69 // ...

70 }

See also

• Effective Java 2nd Edition [14]: Item 62: Document all exceptions thrown by each
method

Rule A15-4-6 (advisory, implementation, automated)
Unchecked exceptions should not be specified together with a function
declaration.

Rationale

Unchecked exceptions are those which do not have an appropriate application-specific
handling by the caller - it is only needed to catch them in main (or in task main
functions). Specifying them is a significant overhead, while they do not bring added
value and they restrict the evolution of functions. Such exceptions can occur anywhere
in a program, and in a typical one they can be very numerous. Having to add such
exceptions in every method declaration would reduce a program’s clarity.

Exception

Specifying unchecked exceptions in function declarations by C++ Standard Library
does not violate this rule. Standard library can not know if an exception is meaningful
for the caller.

Example
1 //% $Id: A15-4-6.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <cstdint>

3 #include <stdexcept>

4 class InvalidInitParameters : public std::logic_error

5 {

6 public:

7 using std::logic_error::logic_error;

233 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://jtechies.blogspot.com/2012/07/item-62-document-all-exceptions-thrown.html
http://jtechies.blogspot.com/2012/07/item-62-document-all-exceptions-thrown.html

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

8 };

9 /// @throw InvalidInitParameters Error caused by passing invalid initialization

10 /// parameters

11 void send1(std::uint8_t* buffer, std::uint8_t bufferLengtd) noexcept(

12 false) // Non-compliant - unchecked exception documented

13 {

14 // ...

15 throw InvalidInitParameters("Invalid parameters");

16 }

17 void send2(std::uint8_t* buffer, std::uint8_t bufferLengtd) noexcept(

18 false) // Compliant - unchecked exception not documented

19 {

20 // ...

21 throw InvalidInitParameters("Invalid parameters");

22 }

See also

• none

6.15.5 Special functions

Rule A15-5-1 (required, implementation, automated)
A class destructor, “delete” operators, move constructor, move assignment
operator and “swap” function shall not exit with an exception. They shall be
all specified as “noexcept”.

Rationale

When an exception is thrown, the call stack is unwound up to the point where the
exception is to be handled. The destructors for all automatic objects declared between
the point where the exception is thrown and where it is to be handled will be invoked. If
one of these destructors or “delete” operators exits with an exception, then the program
will terminate in an implementation-defined manner.

Move constructor and move assignment operator are intended to be noexcept. If they
throw exceptions, strong exception safety can not be guaranteed, because the original
type values could be already modified or partially modified.

The standard-library containers and algorithms will not work correctly if a swap of two
elements exits with an exception.

Note that if move constructor is not noexcept, then the standard library containers will
use the copy constructor rather than the move constructor.

Note that it is acceptable for a destructor to throw an exception that is handled within
this destructor, for example within a try-catch block.

Also, note that a destructor is noexcept by default, but the keyword noexcept needs to
be specified to explicitly state that it can not throw any exception.

234 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Example

1 //% $Id: A15-5-1.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <stdexcept>

3 class C1

4 {

5 public:

6 C1() = default;

7 C1(C1&& rhs)

8 noexcept // Compliant - move constructor declared to be noexcept

9 {

10 }

11 C1& operator=(C1&& rhs) noexcept // Compliant - move assignment operator

12 // declared to be noexcept

13 {

14 return *this;

15 }

16 ~C1() noexcept // Compliant - no exceptions thrown from destructor

17 {

18 }

19 };

20 void swap(C1& lhs, C1& rhs) noexcept // Compliant - swap function does not exit

21 // with an exception

22 {

23 // Implementation

24 }

25 class C2

26 {

27 public:

28 C2() = default;

29 C2(C2&& rhs)

30 noexcept // Compliant - move constructor declared to be noexcept

31 {

32 try

33 {

34 // ...

35 throw std::runtime_error(

36 "Error"); // Exception will not leave move constructor

37 }

38

39 catch (std::exception& e)

40 {

41 // Handle runtime error

42 }

43 }

44 C2& operator=(C2&& rhs) noexcept // Compliant - move assignment operator

45 // declared to be noexcept

46 {

47 try

48 {

49 // ...

50 throw std::runtime_error(

235 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

51 "Error"); // Exception will not leave assignment operator

52 }

53

54 catch (std::exception& e)

55 {

56 // Handle runtime error

57 }

58

59 return *this;

60 }

61 ~C2() // Non-compliant - the destructor does not contain the noexcept

62 // specification

63 {

64 try

65 {

66 // ...

67 throw std::runtime_error(

68 "Error"); // Exception will not leave the destructor

69 }

70

71 catch (std::exception& e)

72 {

73 // Handle runtime error

74 }

75 }

76 };

77 void swap(C2& lhs, C2& rhs) noexcept(

78 false) // Non-compliant - swap function declared to be noexcept(false)

79 {

80 // Implementation

81 throw std::runtime_error("Swap function failed"); // Non-compliant - swap

82 // function exits with an

83 // exception

84 }

85 class C3

86 {

87 public:

88 C3() = default;

89 C3(C3&& rhs) // Non-compliant - move constructor throws

90 {

91 // ...

92 throw std::runtime_error("Error");

93 }

94 C3& operator=(C3&& rhs) // Non-compliant - move assignment operator throws

95 {

96 // ...

97 throw std::runtime_error("Error");

98 return *this;

99 }

100 ~C3() // Non-compliant - destructor exits with an exception

101 {

236 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

102 throw std::runtime_error("Error");

103 }

104 static void operator delete(void* ptr, std::size_t sz)

105 {

106 // ...

107 throw std::runtime_error("Error"); // Non-compliant - operator delete

108 // exits with an exception

109 }

110 };

111 void fn()

112 {

113 C3 c1; // program terminates when c1 is destroyed

114 C3* c2 = new C3;

115 // ...

116 delete c2; // program terminates when c2 is deleted

117 }

See also

• MISRA C++ 2008 [6]: 15-5-1 A class destructor shall not exit with an exception.

• HIC++ v4.0 [8]: 15.2.1 Do not throw an exception from a destructor

• C++ Core Guidelines [10]: E.16: Destructors, deallocation, and swap must never
fail, C.85: Make swap noexcept

Rule A15-5-2 (required, implementation, partially automated)
Program shall not be abruptly terminated. In particular, an implicit or explicit
invocation of std::abort(), std::quick_exit(), std::_Exit(), std::terminate() shall
not be done.

Rationale

Functions that are used to terminate the program in an immediate fashion, i.e.
std::abort(), std::quick_exit(), std::_Exit(), do so without calling exit handlers or calling
destructors of automatic, thread or static storage duration objects. It is implementation-
defined whether opened streams are flushed and closed, and temporary files are
removed.

The std::terminate() function calls std::abort() implicitly in its terminate handler, and it
is implementation-defined whether or not stack unwinding will occur.

Exception

Calling an std::exit() function from main() or from task main functions is acceptable,
because it properly deallocates resources and calls std::atexit() handlers.

Example
1 //% $Id: A15-5-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdlib>

3 #include <exception>

4 void f1() noexcept(false);

237 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/15-2-1-do-not-throw-an-exception-from-a-destructor/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerc-swap-noexceptac85-make-swap-noexcept

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 void f2() // Non-compliant

6 {

7 f1(); // A call to throwing f1() may result in an implicit call to

8 // std::terminate()

9 }

10 void f3() // Compliant

11 {

12 try

13 {

14 f1(); // Handles all exceptions from f1() and does not re-throw

15 }

16 catch (...)

17 {

18 // Handle an exception

19 }

20 }

21 void f4(const char* log)

22 {

23 // Report a log error

24 // ...

25 std::exit(0); // Call std::exit() function which safely cleans up resources

26 }

27 void f5() // Compliant by exception

28 {

29 try

30 {

31 f1();

32 }

33 catch (...)

34 {

35 f4("f1() function failed");

36 }

37 }

38 int main(int, char**)

39 {

40 if (std::atexit(&f2) != 0)

41 {

42 // Handle an error

43 }

44

45 if (std::atexit(&f3) != 0)

46 {

47 // Handle an error

48 }

49

50 // ...

51 return 0;

52 }

See also

238 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• MISRA C++ 2008 [6]: 15-5-3 (Required) The terminate() function shall not be
called implicitly.

• HIC++ v4.0 [8]: 15.3.2 Ensure that a program does not result in a call to
std::terminate

• SEI CERT C++ [9]: ERR50-CPP. Do not abruptly terminate the program

Rule A15-5-3 (required, implementation, automated)
The std::terminate() function shall not be called implicitly.

Rationale

It is implementation-defined whether the call stack is unwound before std::terminate() is
called. There is no guarantee that the destructors of automatic thread or static storage
duration objects will be called.

These are following ways to call std::terminate() function implicitly, according to
(std::terminate() in CppReference [15]):

1. an exception is thrown and not caught (it is implementation-defined whether any
stack unwinding is done in this case)

2. an exception is thrown during exception handling (e.g. from a destructor of some
local object, or from a function that had to be called during exception handling)

3. the constructor or the destructor of a static or thread-local object throws an
exception

4. a function registered with std::atexit or std::at_quick_exit throws an exception

5. a noexcept specification is violated (it is implementation-defined whether any
stack unwinding is done in this case)

6. a dynamic exception specification is violated and the default handler for
std::unexpected is executed

7. a non-default handler for std::unexpected throws an exception that violates the
previously violated dynamic exception specification, if the specification does not
include std::bad_exception

8. std::nested_exception::rethrow_nested is called for an object that isn’t holding a
captured exception

9. an exception is thrown from the initial function of std::thread

10. a joinable std::thread is destroyed or assigned to

Example
1 //% $Id: A15-5-3.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <stdexcept>

3 #include <thread>

4 extern bool f1();

239 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
http://www.codingstandard.com/rule/15-3-2-ensure-that-a-program-does-not-result-in-a-call-to-stdterminate/
https://www.securecoding.cert.org/confluence/display/cplusplus/ERR50-CPP.+Do+not+abruptly+terminate+the+program
http://en.cppreference.com/w/cpp/error/terminate

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5 class A

6 {

7 public:

8 A() noexcept(false)

9 {

10 // ...

11 throw std::runtime_error("Error1");

12 }

13 ~A()

14 {

15 // ...

16 throw std::runtime_error("Error2"); // Non-compliant - std::terminate()

17 // called on throwing an exception

18 // from noexcept(true) destructor

19 }

20 };

21 class B

22 {

23 public:

24 ~B() noexcept(false)

25 {

26 // ...

27 throw std::runtime_error("Error3");

28 }

29 };

30 void f2()

31 {

32 throw;

33 }

34 void threadFunc()

35 {

36 A a; // Throws an exception from a’s constructor and does not handle it in

37 // thread_func()

38 }

39 void f3()

40 {

41 try

42 {

43 std::thread t(&threadFunc); // Non-compliant - std::terminate() called

44 // on throwing an exception from

45 // thread_func()

46

47 if (f1())

48 {

49 throw std::logic_error("Error4");

50 }

51

52 else

53 {

54 f2(); // Non-compliant - std::terminate() called if there is no

55 // active exception to be re-thrown by f2

240 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

56 }

57 }

58 catch (...)

59 {

60 B b; // Non-compliant - std::terminate() called on throwing an

61 // exception from b’s destructor during exception handling

62

63 // ...

64 f2();

65 }

66 }

67 static A a; // Non-compliant - std::terminate() called on throwing an exception

68 // during program’s start-up phase

69 int main(int, char**)

70 {

71 f3(); // Non-compliant - std::terminate() called if std::logic_error is

72 // thrown

73 return 0;

74 }

See also

• MISRA C++ 2008 [6]: 15-5-3 (Required) The terminate() function shall not be
called implicitly.

6.16 Preprocessing directives

6.16.0 General

Rule A16-0-1 (required, implementation, automated)
The pre-processor shall only be used for unconditional and conditional file
inclusion and include guards, and using the following directives: (1) #ifndef,
(2) #ifdef, (3) #if, (4) #if defined, (5) #elif, (6) #else, (7) #define, (8) #endif, (9)
#include.

Rationale

C++ provides safer, more readable and easier to maintain ways of achieving what is
often done using the pre-processor. The pre-processor does not obey the linkage,
lookup and function call semantics. Instead, constant objects, constexprs, inline
functions and templates are to be used.

Example

1 // $Id: A16-0-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #pragma once // Non-compliant - implementation-defined feature

3

4 #ifndef HEADER_FILE_NAME // Compliant - include guard

5 #define HEADER_FILE_NAME // Compliant - include guard

241 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6

7 #include <cstdint> // Compliant - unconditional file inclusion

8

9 #ifdef WIN32

10 #include <windows.h> // Compliant - conditional file inclusion

11 #endif

12

13 #ifdef WIN32

14 std::int32_t fn1(

15 std::int16_t x,

16 std::int16_t y) noexcept; // Non-compliant - not a file inclusion

17 #endif

18

19 #if defined VERSION && VERSION > 2011L // Compliant

20 #include <array> // Compliant - conditional file inclusion

21 #elif VERSION > 1998L // Compliant

22 #include <vector> // Compliant - conditional file inclusion

23 #endif // Compliant

24

25 #define MAX_ARRAY_SIZE 1024U // Non-compliant

26 #ifndef MAX_ARRAY_SIZE // Non-compliant

27 #error "MAX_ARRAY_SIZE has not been defined" // Non-compliant

28 #endif // Non-compliant

29 #undef MAX_ARRAY_SIZE // Non-compliant

30

31 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) // Non-compliant

32 #define PLUS2(X) ((X) + 2) // Non-compliant - function should be used instead

33 #define PI 3.14159F // Non-compliant - constexpr should be used instead

34 #define std ::int32_t long // Non-compliant - ’using’ should be used instead

35 #define STARTIF if(// Non-compliant - language redefinition

36 #define HEADER "filename.h" // Non-compliant - string literal

37

38 void fn2() noexcept

39 {

40 #ifdef __linux__ // Non-compliant - ifdef not used for file inclusion

41

42 // ...

43

44 #elif WIN32 // Non-compliant - elif not used for file inclusion

45

46 // ...

47

48 #elif __APPLE__ // Non-compliant - elif not used for file inclusion

49

50 // ...

51

52 #else // Non-compliant - else not used for file inclusion

53

54 // ...

55

56 #endif // Non-compliant - endif not used for file inclusion or include guards

242 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

57 }

58

59 #endif // Compliant - include guard

See also

• MISRA C++ 2008 [6]: Rule 16-2-1 The pre-processor shall only be used for file
inclusion and include guards.

• MISRA C++ 2008 [6]: Rule 16-2-2 C++ macros shall only be used for: include
guards, type qualifiers, or storage class specifiers.

• JSF December 2005 [7]: AV Rule 26 Only the following pre-processor directives
shall be used: 1. #ifndef 2. #define 3. #endif 4. #include.

• JSF December 2005 [7]: AV Rule 27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header file. Other techniques to prevent
the multiple inclusions of header files will not be used.

• JSF December 2005 [7]: AV Rule 28 The #ifndef and #endif pre-processor
directives will only be used as defined in AV Rule 27 to prevent multiple inclusions
of the same header file.

• JSF December 2005 [7]: AV Rule 29 The #define pre-processor directive shall
not be used to create inline macros. Inline functions shall be used instead.

• JSF December 2005 [7]: AV Rule 30 The #define pre-processor directive shall not
be used to define constant values. Instead, the const qualifier shall be applied to
variable declarations to specify constant values.

• JSF December 2005 [7]: AV Rule 31 The #define pre-processor directive will
only be used as part of the technique to prevent multiple inclusions of the same
header file.

• JSF December 2005 [7]: AV Rule 32 The #include pre-processor directive will
only be used to include header (*.h) files.

• HIC++ v4.0 [8]: 16.1.1 Use the preprocessor only for implementing include
guards, and including header files with include guards.

Rule M16-0-1 (required, implementation, automated)
#include directives in a file shall only be preceded by other pre-processor
directives or comments.

See MISRA C++ 2008 [6]

Rule M16-0-2 (required, implementation, automated)
Macros shall only be #define’d or #undef’d in the global namespace.

See MISRA C++ 2008 [6]

243 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/16-1-1-use-the-preprocessor-only-for-implementing-include-guards-and-including-header-files-with-include-guards/
http://www.codingstandard.com/rule/16-1-1-use-the-preprocessor-only-for-implementing-include-guards-and-including-header-files-with-include-guards/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M16-0-5 (required, implementation, automated)
Arguments to a function-like macro shall not contain tokens that look like
pre-processing directives.

See MISRA C++ 2008 [6]

Note: Function-like macros are anyway not allowed, see A16-0-1. This rule is kept in
case A16-0-1 is disabled in a project.

Rule M16-0-6 (required, implementation, automated)
In the definition of a function-like macro, each instance of a parameter shall
be enclosed in parentheses, unless it is used as the operand of # or ##.

See MISRA C++ 2008 [6]

Note: Function-like macros are anyway not allowed, see A16-0-1. This rule is kept in
case A16-0-1 is disabled in a project.

Rule M16-0-7 (required, implementation, automated)
Undefined macro identifiers shall not be used in #if or #elif pre-processor
directives, except as operands to the defined operator.

See MISRA C++ 2008 [6]

Note: “#if” and “#elif” are anyway only allowed for conditional file inclusion, see A16-0-
1. This rule is kept in case A16-0-1 is disabled in a project.

Rule M16-0-8 (required, implementation, automated)
If the # token appears as the first token on a line, then it shall be immediately
followed by a pre-processing token.

See MISRA C++ 2008 [6]

6.16.1 Conditional inclusion

Rule M16-1-1 (required, implementation, automated)
The defined pre-processor operator shall only be used in one of the two
standard forms.

See MISRA C++ 2008 [6]

Note: “#if defined” is anyway only allowed for conditional file inclusion, see A16-0-1.
This rule is kept in case A16-0-1 is disabled in a project.

244 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M16-1-2 (required, implementation, automated)
All #else, #elif and #endif pre-processor directives shall reside in the same
file as the #if or #ifdef directive to which they are related.

See MISRA C++ 2008 [6]

Note: “#if”, “#elif”, “#else” and “#ifded” are anyway only allowed for conditional file
inclusion, see A16-0-1. This rule is kept in case A16-0-1 is disabled in a project.

6.16.2 Source file inclusion

Rule M16-2-3 (required, implementation, automated)
Include guards shall be provided.

See MISRA C++ 2008 [6]

Rule A16-2-1 (required, implementation, automated)
The ’, ", /*, //, \ characters shall not occur in a header file name or in
#include directive.

Rationale

It is undefined behavior if the ’, ", /*, //, \\ characters are used in #include
directive, between < and > or “ ” delimiters.

Example

1 // $Id: A16-2-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2

3 // #include <directory/headerfile.hpp> // Compliant

4 // #include <headerfile.hpp> // Compliant

5 // #include "directory/headerfile.hpp" // Compliant

6 // #include "headerfile.hpp" // Compliant

7 // #include <directory/*.hpp> // Non-compliant

8 // #include <header’file.hpp> // Non-compliant

9 // #include <"headerfile.hpp"> // Non-compliant

10 // #include <directory\\headerfile.hpp> // Non-compliant

See also

• MISRA C++ 2008 [6]: Rule 16-2-4 The ’, ", /* or // characters shall not occur in a
header file name.

• MISRA C++ 2008 [6]: Rule 16-2-5 The \character shall not occur in a header file
name.

245 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule A16-2-2 (required, implementation, automated)
There shall be no unused include directives.

Rationale

Presence of unused include directives considerably slows down compilation phase,
makes the code base larger and introduces unneeded dependencies.

Example
1 // $Id: A16-2-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <algorithm> // Non-compliant - nothing from algorithm header file is

used

3 #include <array> // Non-compliant - nothing from array header file is used

4 #include <cstdint> // Compliant - std::int32_t, std::uint8_t are used

5 #include <iostream> // Compliant - cout is used

6 #include <stdexcept> // Compliant - out_of_range is used

7 #include <vector> // Compliant - vector is used

8 void fn1() noexcept

9 {

10 std::int32_t x = 0;

11 // ...

12 std::uint8_t y = 0;

13 // ...

14 }

15 void fn2() noexcept(false)

16 {

17 try

18 {

19 std::vector<std::int32_t> v;

20 // ...

21 std::uint8_t idx = 3;

22 std::int32_t value = v.at(idx);

23 }

24 catch (std::out_of_range& e)

25 {

26 std::cout << e.what() << ’\n’;

27 }

28 }

See also

• HIC++ v4.0 [8]: 16.1.5 Include directly the minimum number of headers required
for compilation.

Rule A16-2-3 (required, implementation, non-automated)
All used include directives shall be explicitly stated.

Rationale

All header files that define types used in a file should be included explicitly. Relying on
inclusion dependencies of other header files makes the code more difficult to maintain.

246 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/16-1-5-include-directly-the-minimum-number-of-headers-required-for-compilation/
http://www.codingstandard.com/rule/16-1-5-include-directly-the-minimum-number-of-headers-required-for-compilation/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Note that in header files some include directives could be easily replaced with forward
declarations.

Example

1 // $Id: A16-2-3.hpp 271696 2017-03-23 09:23:09Z piotr.tanski $

2 #ifndef HEADER_HPP

3 #define HEADER_HPP

4

5 #include <array>

6 #include <cstdint>

7

8 class B; // Compliant - type B can be included using forward declaration

9 // std::into

10 // the header file

11

12 class OutOfRangeException

13 : public std::out_of_range // Non-compliant - <stdexcept> which defines

14 // out_of_range included

15 // implicitly through <array>

16 {

17 public:

18 using std::out_of_range::out_of_range;

19 };

20

21 class A

22 {

23 public:

24 // Interface of class A

25

26 private:

27 std::array<std::uint32_t, 10>

28 m_array; // Compliant - <array> included explicitly

29 B* m_b;

30 std::int32_t m_x; // Compliant - <cstdint> included explicitly

31 };

32

33 #endif

See also

• none

6.16.3 Macro replacement

Rule M16-3-1 (required, implementation, automated)
There shall be at most one occurrence of the # or ## operators in a single
macro definition.

See MISRA C++ 2008 [6]

247 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Note: Operators # and ## are anyway not allowed, see M16-3-2. This rule is kept in
case M16-3-2 is disabled in a project.

Rule M16-3-2 (advisory, implementation, automated)
The # and ## operators should not be used.

See MISRA C++ 2008 [6]

6.16.6 Error directive

Rule A16-6-1 (required, implementation, automated)
#error directive shall not be used.

Rationale

Using the pre-processor #error directive may lead to code that is complicated and not
clear for developers. The #error directive can not be applied to templates as it will not
be evaluated as a per-instance template deduction.

Static assertion, similarly to #error directive, provides a compile-time error checking.
However, static_assert behaves correctly in all C++ concepts and makes the code
more readable and does not rely on pre-processor directives.

Note: “#error” is anyway not allowed, see A16-0-1. This rule is kept in case A16-0-1 is
disabled in a project.

Example
1 // $Id: A16-6-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <type_traits>

4 constexpr std::int32_t value = 0;

5 #if value > 10

6 #error "Incorrect value" // Non-compliant

7 #endif

8 void f1() noexcept

9 {

10 static_assert(value <= 10, "Incorrect value"); // Compliant

11 // ...

12 }

13 template <typename T>

14 void f2(T& a)

15 {

16 static_assert(std::is_copy_constructible<T>::value,

17 "f2() function requires copying"); // Compliant

18 // ...

19 }

See also

• none

248 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.16.7 Pragma directive

Rule A16-7-1 (required, implementation, automated)
The #pragma directive shall not be used.

Rationale

The #pragma directive is implementation-defined and causes the implementation to
behave in implementation-defined manner.

Example

1 // $Id: A16-7-1.hpp 270497 2017-03-14 14:58:50Z piotr.tanski $

2 // #pragma once // Non-compliant - implementation-defined manner

3 #ifndef A16_7_1_HPP // Compliant - equivalent to #pragma once directive

4 #define A16_7_1_HPP

5

6 // ...

7

8 #endif

See also

• MISRA C++ 2008 [6]: Rule 16-6-1 All uses of the #pragma directive shall be
documented.

6.17 Library introduction - partial

6.17.1 General

Rule A17-0-1 (required, implementation, automated)
Reserved identifiers, macros and functions in the C++ standard library shall
not be defined, redefined or undefined.

Rationale

It is generally bad practice to #undef a macro that is defined in the standard library.
It is also bad practice to #define a macro name that is a C++ reserved identifier, or
C++ keyword or the name of any macro, object or function in the standard library. For
example, there are some specific reserved words and function names that are known
to give rise to undefined behavior if they are redefined or undefined, including defined,
__LINE__, __FILE__, __DATE__, __TIME__, __STDC__, errno and assert.

Refer to C++ Language Standard for a list of the identifiers that are reserved. Generally,
all identifiers that begin with the underscore character are reserved.

Note that this rule applies regardless of which header files, if any, are actually included.

Example

249 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A17-0-1.cpp 271389 2017-03-21 14:41:05Z piotr.tanski $

2 #undef __TIME__ // Non-compliant

3 #define __LINE__ 20 // Non-compliant

See also

• MISRA C++ 2008 [6]: Rule 17-0-1 Reserved identifiers, macros and functions in
the standard library shall not be defined, redefined or undefined.

Rule M17-0-2 (required, implementation, automated)
The names of standard library macros and objects shall not be reused.

See MISRA C++ 2008 [6]

Rule M17-0-3 (required, implementation, automated)
The names of standard library functions shall not be overridden.

See MISRA C++ 2008 [6]

Rule A17-0-2 (required, implementation, automated)
All project’s code including used libraries (including standard and user-
defined libraries) and any third-party user code shall conform to the
AUTOSAR C++14 Coding Guidelines.

Rationale

Note that library code can be provided as source code or be provided in a compiled
form. The rule applies for any form of libraries.

As for any rule in this standard, a deviation procedure can be performed for this rule
and the project needs to argue what are the measures ensuring that non-compliant
libraries can be used in a project, addressing:

1. interference from the non-compliant code (for example, a library function
overwrites the stack or heap of the caller)

2. residual errors in non-compliant code resulting with its wrong outputs, which are
subsequently used (for example, a library function delivers wrong return value
used by the caller).

Exception

If a function is defined in a library or any third-party user code but it is ensured that the
function will not be used (directly or indirectly) in the project, then the function may not
conform to the AUTOSAR C++14 Coding Guidelines.

See also

• none

250 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M17-0-5 (required, implementation, automated)
The setjmp macro and the longjmp function shall not be used.

See MISRA C++ 2008 [6]

See: A6-6-1.

6.17.2 The C standard library

Rule A17-1-1 (required, implementation, non-automated)
Use of the C Standard Library shall be encapsulated and isolated.

Rationale

The C Standard Library leaves the responsibility for handling errors, data races and
security concerns up to developers. Therefore, use of the C Standard Library needs
to be separated and wrapped with functions that will be fully responsible for all specific
checks and error handling.

Example

1 // $Id: A17-1-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cerrno>

3 #include <cstdio>

4 #include <cstring>

5 #include <iostream>

6 #include <stdexcept>

7

8 void fn1(const char* filename) // Compliant - C code is isolated; fn1()

9 // function is a wrapper.

10 {

11 FILE* handle = fopen(filename, "rb");

12 if (handle == NULL)

13 {

14 throw std::system_error(errno, std::system_category());

15 }

16 // ...

17 fclose(handle);

18 }

19

20 void fn2() noexcept

21 {

22 try

23 {

24 fn1("filename.txt"); // Compliant - fn1() allows you to use C code like

25 // C++ code

26

27 // ...

28 }

251 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

29 catch (std::system_error& e)

30 {

31 std::cerr << "Error: " << e.code() << " - " << e.what() << ’\n’;

32 }

33 }

34

35 std::int32_t fn3(const char* filename) noexcept // Non-compliant - placing C

36 // functions calls along with C++

37 // code forces a developer to be

38 // responsible for C-specific error

39 // handling, explicit resource

40 // cleanup, etc.

41 {

42 FILE* handle = fopen(filename, "rb");

43 if (handle == NULL)

44 {

45 std::cerr << "An error occured: " << errno << " - " << strerror(errno)

46 << ’\n’;

47 return errno;

48 }

49

50 try

51 {

52 // ...

53 fclose(handle);

54 }

55 catch (std::system_error& e)

56 {

57 fclose(handle);

58 }

59 catch (std::exception& e)

60 {

61 fclose(handle);

62 }

63

64 return errno;

65 }

See also

• MISRA C++ 2008 [6]: Rule 19-3-1 The error indicator errno shall not be used.

• HIC++ v4.0 [8]: 17.2.1 Wrap use of the C Standard Library.

• JSF December 2005 [7]: Chapter 4.5.1: Standard Libraries, AV Rule 17 - AV Rule
25.

6.17.3 Definitions

The corresponding section in the C++14 standard provides a glossary only.

252 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-2-1-wrap-use-of-the-c-standard-library/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.18 Language support library - partial

The corresponding chapter in the C++ standard defines the fundamental support
libraries, including integer types, dynamic memory, start and termination.

6.18.0 General

Rule A18-0-1 (required, implementation, automated)
The C library facilities shall only be accessed through C++ library headers.

Rationale

C libraries (e.g. <stdio.h>) also have corresponding C++ libraries (e.g. <cstdio>). This
rule requires that the C++ version is used.

See also

• MISRA C++ 2008 [6]: Rule 18-0-1 (Required) The C library shall not be used.

• HIC++ v4.0 [8]: 1.3.3 Do not use the C Standard Library .h headers.

Rule A18-0-2 (required, implementation, automated)
The library functions atof, atoi and atol from library <cstdlib> shall not be
used.

Rationale

These functions have undefined behavior associated with them when the string cannot
be converted.

Since C++11 Language Standard, new numeric conversion functions (See: std::stoi,
std::stol, std::stoll [15]) were introduced. They guarantee defined behavior.

Example
1 // $Id: A18-0-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <cstdlib>

4 #include <string>

5 std::int32_t f1(const char* str) noexcept

6 {

7 return atoi(str); // Non-compliant - undefined behavior if str can not

8 // be converted

9 }

10 std::int32_t f2(std::string const& str) noexcept(false)

11 {

12 return std::stoi(str); // Compliant - throws a std::invalid_argument

13 // exception if str can not be converted

14 }

See also

253 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/1-3-3-do-not-use-the-c-standard-library-h-headers/
http://en.cppreference.com/w/cpp/string/basic_string/stol
http://en.cppreference.com/w/cpp/string/basic_string/stol

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• MISRA C++ 2008 [6]: Rule 18-0-2 The library functions atof, atoi and atol from
library <cstdlib> shall not be used.

Rule M18-0-3 (required, implementation, automated)
The library functions abort, exit, getenv and system from library <cstdlib>
shall not be used.

See MISRA C++ 2008 [6]

Rule M18-0-4 (required, implementation, automated)
The time handling functions of library <ctime> shall not be used.

See MISRA C++ 2008 [6]

Rule M18-0-5 (required, implementation, automated)
The unbounded functions of library <cstring> shall not be used.

See MISRA C++ 2008 [6]

Rule A18-0-3 (required, implementation, automated)
The library <clocale> (locale.h) and the setlocale function shall not be used.

Rationale

A call to the setlocale function introduces a data race with other calls to setlocale
function.

It may also introduce a data race with calls to functions that are affected by the current
locale settings: fprintf, isprint, iswdigit, localeconv, tolower, fscanf, ispunct, iswgraph,
mblen, toupper, isalnum, isspace, iswlower, mbstowcs, towlower, isalpha, isupper,
iswprint, mbtowc, towupper, isblank, iswalnum, iswpunct, setlocale, wcscoll, iscntrl,
iswalpha, iswspace, strcoll, wcstod, isdigit, iswblank, iswupper, strerror, wcstombs,
isgraph, iswcntrl, iswxdigit, strtod, wcsxfrm, islower, iswctype, isxdigit, strxfrm, wctomb.

See also

• JSF December 2005 [7]: AV Rule 19 <locale.h> and the setlocale function shall
not be used.

6.18.1 Types

Rule A18-1-1 (advisory, implementation, automated)
C-style arrays should not be used.

Rationale

C-style array is implicitly convertible to raw pointer and easily loses information about
its size. This construct is unsafe, unmaintainable and is a source of potential errors.

254 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

For fixed-size, stack-allocated arrays, std::array is supposed to be used instead. The
STL library std::array is designed to work with STL algorithms.

Exception

It is allowed to declare a static constexpr data member of a C-style array type.

Example

1 // $Id: A18-1-1.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <algorithm>

3 #include <array>

4 #include <cstdint>

5 void fn() noexcept

6 {

7 const std::uint8_t size = 10;

8 std::int32_t a1[size]; // Non-compliant

9 std::array<std::int32_t, size> a2; // Compliant

10 // ...

11 std::sort(a1, a1 + size);

12 std::sort(a2.begin(), a2.end()); // More readable and maintainable way of

13 // working with STL algorithms

14 }

15 class A

16 {

17 public:

18 static constexpr std::uint8_t array[]{0, 1, 2}; // Compliant by exception

19 };

See also

• C++ Core Guidelines [10]: ES.27: Use std::array or stack_array for arrays on the
stack.

• C++ Core Guidelines [10]: SL.con.1: Prefer using STL array or vector instead of
a C array.

Rule A18-1-2 (required, implementation, automated)
The std::vector<bool> shall not be used.

Rationale

The std::vector<bool> specialization does not work with all STL algorithms as
expected. In particular operator[] does not return a contiguous sequence of elements
as it does for other types.

The C++ Language Standard guarantees that elements of an STL container can be
safely concurrently modified, except for an std::vector<bool>.

Note that fixed-size std::array of bools, std::deque<bool> or creating POD wrapper for
bool type and using it with std::vector are possible alternatives.

Example

255 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-stackaes27-use-stdarray-or-stackarray-for-arrays-on-the-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-stackaes27-use-stdarray-or-stackarray-for-arrays-on-the-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namersl-arraysaslcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namersl-arraysaslcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 // $Id: A18-1-2.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <vector>

4 void fn() noexcept

5 {

6 std::vector<std::uint8_t> v1; // Compliant

7 std::vector<bool> v2; // Non-compliant

8 }

See also

• HIC++ v4.0 [8]: 17.1.1 Do not use std::vector<bool>.

Rule A18-1-3 (required, implementation, automated)
The std::auto_ptr shall not be used.

Rationale

The std::auto_ptr smart pointer is deprecated since C++11 Language Standard and it
is planned to be withdrawn in C++17 Language Standard.

The std::auto_ptr provides unusual copy semantics and it can not be placed in STL
containers. It is recommended to use std::unique_ptr instead.

Example
1 // $Id: A18-1-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4 #include <vector>

5 void fn() noexcept

6 {

7 std::auto_ptr<std::int32_t> ptr1(new std::int32_t(10)); // Non-compliant

8 std::unique_ptr<std::int32_t> ptr2 =

9 std::make_unique<std::int32_t>(10); // Compliant

10 std::vector<std::auto_ptr<std::int32_t>> v; // Non-compliant

11 }

See also

• HIC++ v4.0 [8]: 1.3.4 Do not use deprecated STL library features.

• cppreference.com [15]: std::auto_ptr.

Rule A18-1-4 (required, implementation, automated)
The std::shared_ptr shall not refer to an array type.

Rationale

Memory allocated for array type needs to be deallocated using delete[] syntax. Shared
pointers do not have such information, and it is not possible to pass a custom array
deleter to std::make_shared function.

256 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-1-1-do-not-use-stdvector/
http://www.codingstandard.com/rule/1-3-4-do-not-use-deprecated-stl-library-features/
http://en.cppreference.com/w/cpp/memory/auto_ptr

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

An std::array or std::vector can be used instead of the raw array type.

Note that it is allowed to use the std::unique_ptr with T[] template argument.

Example

1 // $Id: A18-1-4.cpp 271752 2017-03-23 12:07:07Z piotr.tanski $

2 #include <array>

3 #include <memory>

4 #include <vector>

5 class A

6 {

7 };

8 void f1() noexcept(false)

9 {

10 A cArray[10]; // Compliant

11 std::shared_ptr<A> ptr1(

12 cArray); // Non-compliant - ptr1 will not delete all of its elements

13 std::shared_ptr<A> ptr2(

14 new A[10]); // Non-compliant - ptr2 will not delete all of its elements

15 // std::shared_ptr<A[]> ptr3(new A[10]); // Non-compliant - compilation

16 // error

17 std::shared_ptr<std::array<A, 10>> ptr4 =

18 std::make_shared<std::array<A, 10>>(); // Compliant

19 std::shared_ptr<std::vector<A>> ptr5 =

20 std::make_shared<std::vector<A>>(10, A()); // Compliant

21 }

22 void f2() noexcept(false)

23 {

24 // std::unique_ptr<A> ptr1 = std::make_unique<A>(10); // Non-compliant - no

25 // such constructor in class A

26 std::unique_ptr<A> ptr2{

27 new A[10]}; // Non-compliant - ptr2 will not delete all of its elements

28 std::unique_ptr<A[]> ptr3 =

29 std::make_unique<A[]>(10); // Compliant - std::unique_ptr provides a

30 // specialization for T[] types

31 }

See also

• HIC++ v4.0 [8]: 17.3.4 Do not create smart pointers of array type.

Rule A18-1-5 (required, implementation, automated)
The std::unique_ptr shall not be passed to a function by const reference.

Rationale

A parameter of type const std::unique_ptr& provides constness benefits for
std::unique_ptr only, not for an object it is pointing to. This may lead to confusion
whether a function is allowed to modify the underlying pointer or not.

Instead, const pointer or const reference to the underlying object should be passed.

257 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-3-4-do-not-create-smart-pointers-of-array-type/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Example

1 // $Id: A18-1-5.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4

5 void fn1(std::unique_ptr<std::int32_t> ptr) // Compliant

6 {

7 // fn1() now owns ptr

8 }

9

10 void fn2(std::unique_ptr<std::int32_t>& ptr) // Compliant

11 {

12 // fn2() is explicitly allowed to make a ptr to refer to a different object

13 }

14

15 void fn3(const std::unique_ptr<std::int32_t>& ptr) // Non-compliant

16 {

17 // fn3 takes ptr by const reference but still it is able to make a ptr to

18 // refer to a different object

19

20 *ptr = 10; // No compilation error

21 }

22

23 void fn4(const std::int32_t* ptr) // Compliant

24 {

25 // fn4 takes a const raw pointer

26

27 //*ptr = 10; // Compilation error

28 }

29

30 void fn5()

31 {

32 fn1(std::make_unique<std::int32_t>(0));

33

34 std::unique_ptr<std::int32_t> ptr = std::make_unique<std::int32_t>(0);

35 fn2(ptr);

36 fn3(ptr);

37 fn4(ptr.get());

38 }

See also

• HIC++ v4.0 [8]: 8.2.4 Do not pass std::unique_ptr by const reference.

• C++ Core Guidelines [10]: R.33: Take a unique_ptr<widget>& parameter to
express that a function reseats the widget.

6.18.2 Implementation properties

258 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/8-2-4-do-not-pass-stdunique_ptr-by-const-reference/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-reseatar33-take-a-uniqueptrwidget-parameter-to-express-that-a-function-reseats-thewidget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-reseatar33-take-a-uniqueptrwidget-parameter-to-express-that-a-function-reseats-thewidget

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rule M18-2-1 (required, implementation, automated)
The macro offsetof shall not be used.

See MISRA C++ 2008 [6]

6.18.5 Dynamic memory management

The dynamic memory management provides flexible mechanism of allocating and
deallocating blocks of memory during run-time phase of the program. The application
is allowed to acquire as much memory as it needs in its current state, and return it once
the memory is not used.

Moreover, this is a convenient way of extending lifetime of objects outside the functions
where the objects were created. In other words, a function can create objects on
dynamic memory and then exit and the objects that were created in the dynamic
memory are preserved and can be used subsequently by other functions.

The dynamic memory management uses the Operating System routines to
allocate and deallocate memory, what introduces several issues. Therefore, the
AUTOSAR C++14 Coding Guidelines defines specific rules for appropriate usage and
implementation of dynamic memory management.

Challenges arising due to dynamic memory usage

Issue: Solution:

Memory leaks RAII design pattern usage is highly recommended
for managing resource and memory acquisition and
release (A18-5-2). It is prohibited to make calls
to new and delete operators explicitly, to force
programmers to assign each allocated memory
block to manager object which deallocates the
memory automatically on leaving its scope. Also,
the form of delete operator used for memory
deallocation needs to match the form of new
operator used for memory allocation (A18-5-3).

Memory fragmentation Memory allocator used in the project needs to
guarantee that no memory fragmentation occurs
(A18-5-5).

Invalid memory access C-style functions malloc/calloc/realloc must not be
used in the project, so memory block can not be
accessed as it would be of another type. Memory
allocator used in the project needs to guarantee that
objects do not overlap in the physical storage (A18-
5-5).

259 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Erroneous memory allocations The application program needs to define the
maximum amount of dynamic memory it needs,
so running out of memory must not occur during
faultless execution. The memory would be pre-
allocated before run-time phase of the program
(A18-5-5).

Not deterministic execution time of memory
allocation and deallocation

Memory allocator used in the project needs to
guarantee that memory allocation and deallocation
are executed within defined time constraints that
are appropriate for the response time constraints
defined for the real-time system and its programs
(A18-5-7).

Table 6.2: Challenged of dynamic memory usage

Rule A18-5-1 (required, implementation, automated)
Functions malloc, calloc, realloc and free shall not be used.

Rationale

C-style allocation/deallocation using malloc/calloc/realloc/free functions is not type safe
and does not invoke class’s constructors and destructors.

Note that invoking free function on a pointer allocated with new, as well as invoking
delete on a pointer allocated with malloc/realloc/calloc function, result in undefined
behavior.

Also, note that realloc function should only be used on memory allocated via malloc or
calloc functions.

Exception

This rule does not apply to dynamic memory allocation/deallocation performed in user-
defined overloads of new and delete operators or malloc and free functions custom
implementations.

Example

1 // $Id: A18-5-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <cstdlib>

4 void f1() noexcept(false)

5 {

6 // Non-compliant

7 std::int32_t* p1 = static_cast<std::int32_t*>(malloc(sizeof(std::int32_t)));

8 *p1 = 0;

9

10 // Compliant

11 std::int32_t* p2 = new std::int32_t(0);

12

260 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

13 // Compliant

14 delete p2;

15

16 // Non-compliant

17 free(p1);

18

19 // Non-compliant

20 std::int32_t* array1 =

21 static_cast<std::int32_t*>(calloc(10, sizeof(std::int32_t)));

22

23 // Non-compliant

24 std::int32_t* array2 =

25 static_cast<std::int32_t*>(realloc(array1, 10 * sizeof(std::int32_t)));

26

27 // Compliant

28 std::int32_t* array3 = new std::int32_t[10];

29

30 // Compliant

31 delete[] array3;

32

33 // Non-compliant

34 free(array2);

35

36 // Non-compliant

37 free(array1);

38 }

39 void f2() noexcept(false)

40 {

41 // Non-compliant

42 std::int32_t* p1 = static_cast<std::int32_t*>(malloc(sizeof(std::int32_t)));

43 // Non-compliant - undefined behavior

44 delete p1;

45

46 std::int32_t* p2 = new std::int32_t(0); // Compliant

47 free(p2); // Non-compliant - undefined behavior

48 }

49 void operator delete(void* ptr) noexcept

50 {

51 std::free(ptr); // Compliant by exception

52 }

See also

• HIC++ v4.0 [8]: 5.3.2 Allocate memory using new and release it using delete.

• C++ Core Guidelines [10]: R.10: Avoid malloc() and free().

Rule A18-5-2 (required, implementation, partially automated)
Operators new and delete shall not be called explicitly.

261 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-3-2-allocate-memory-using-new-and-release-it-using-delete/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-mallocfree

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

If a resource returned by operator new is assigned to a raw pointer, then a developer’s
mistake, an exception or a return may lead to memory leak.

It is highly recommended to follow RAII design pattern or use manager objects that
manage the lifetime of variables with dynamic storage duration, e.g.:

• std::unique_ptr along with std::make_unique

• std::shared_ptr along with std::make_shared

• std::string

• std::vector

Exception

If the result of explicit resource allocation using new operator is immediately given to a
manager object or a RAII class which does not provide a safe alternative for memory
allocation, then it is not a violation of the rule.

This rule does not apply to dynamic memory allocation/deallocation performed in user-
defined RAII classes and managers.

Example

1 // $Id: A1-7-2.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4 #include <vector>

5 std::int32_t fn1()

6 {

7 std::int32_t errorCode{0};

8

9 std::int32_t* ptr =

10 new std::int32_t{0}; // Non-compliant - new called explicitly

11 // ...

12 if (errorCode != 0)

13 {

14 throw std::runtime_error{"Error"}; // Memory leak could occur here

15 }

16 // ...

17

18 if (errorCode != 0)

19 {

20 return 1; // Memory leak could occur here

21 }

22 // ...

23 return errorCode; // Memory leak could occur here

24 }

25 std::int32_t fn2()

26 {

27 std::int32_t errorCode{0};

262 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

28

29 std::unique_ptr<std::int32_t> ptr1 = std::make_unique<std::int32_t>(

30 0); // Compliant - alternative for ’new std::int32_t(0)’

31

32 std::unique_ptr<std::int32_t> ptr2(new std::int32_t{

33 0}); // Non-compliant - unique_ptr provides make_unique

34 // function which shall be used instead of explicit

35 // new operator

36

37 std::shared_ptr<std::int32_t> ptr3 =

38 std::make_shared<std::int32_t>(0); // Compliant

39

40 std::vector<std::int32_t> array; // Compliant

41 // alternative for dynamic array

42

43 if (errorCode != 0)

44 {

45 throw std::runtime_error{"Error"}; // No memory leaks

46 }

47 // ...

48 if (errorCode != 0)

49 {

50 return 1; // No memory leaks

51 }

52 // ...

53 return errorCode; // No memory leaks

54 }

55 template <typename T>

56 class ObjectManager

57 {

58 public:

59 explicit ObjectManager(T* obj) : object{obj} {}

60 ~ObjectManager() { delete object; }

61 // Implementation

62

63 private:

64 T* object;

65 };

66 std::int32_t fn3()

67 {

68 std::int32_t errorCode{0};

69

70 ObjectManager<std::int32_t> manager{

71 new std::int32_t{0}}; // Compliant by exception

72 if (errorCode != 0)

73 {

74 throw std::runtime_error{"Error"}; // No memory leak

75 }

76 // ...

77 if (errorCode != 0)

78 {

263 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

79 return 1; // No memory leak

80 }

81 // ...

82 return errorCode; // No memory leak

83 }

See also

• C++ Core Guidelines [10]: R.11: Avoid calling new and delete explicitly.

• C++ Core Guidelines [10]: R.12: Immediately give the result of an explicit
resource allocation to a manager object.

• C++ Core Guidelines [10]: ES.60: Avoid new and delete outside resource
management functions.

Rule A18-5-3 (required, implementation, automated)
The form of delete operator shall match the form of new operator used to
allocate the memory.

Rationale

Plain and array forms of new and delete operators must not be mixed. If new or new[]
operator was used to allocate the memory, then respectively delete or delete[] operator
is supposed to be used to deallocate it.

Example

1 // $Id: A18-5-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 void fn1()

4 {

5 std::int32_t* array =

6 new std::int32_t[10]; // new[] operator used to allocate the

7 // memory for an array

8 // ...

9 delete array; // Non-compliant - delete[] operator supposed to be used

10 }

11 void fn2()

12 {

13 std::int32_t* object = new std::int32_t{0}; // new operator used to

14 // allocate the memory for an

15 // integer type

16 // ...

17 delete[] object; // Non-compliant - delete operator supposed to be used

18 }

19 void fn3()

20 {

21 std::int32_t* object = new std::int32_t{0};

22 std::int32_t* array = new std::int32_t[10];

23 // ...

24 delete[] array; // Compliant

264 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-newdeletear11-avoid-calling-new-and-delete-explicitly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-immediate-allocar12-immediately-give-the-result-of-an-explicit-resource-allocation-to-a-manager-object
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerr-immediate-allocar12-immediately-give-the-result-of-an-explicit-resource-allocation-to-a-manager-object
hhttp://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-newaes60-avoid-new-and-delete-outside-resource-management-functions
hhttp://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-nameres-newaes60-avoid-new-and-delete-outside-resource-management-functions

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

25 delete object; // Compliant

26 }

See also

• HIC++ v4.0 [8]: 5.3.3 Ensure that the form of delete matches the form of new
used to allocate the memory.

Rule A18-5-4 (required, implementation, automated)
If a project has sized or unsized version of operator “delete” globally defined,
then both sized and unsized versions shall be defined.

Rationale

Since C++14 Language Standard it is allowed to overload both sized and unsized
versions of the “delete” operator. Sized version provides more efficient way of memory
deallocation than the unsized one, especially when the allocator allocates in size
categories instead of storing the size nearby the object.

Example
1 //% $Id: A1-7-4.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <cstdlib>

3 void operator delete(

4 void* ptr) noexcept // Compliant - sized version is defined

5 {

6 std::free(ptr);

7 }

8 void operator delete(

9 void* ptr,

10 std::size_t size) noexcept // Compliant - unsized version is defined

11 {

12 std::free(ptr);

13 }

See also

• none

Rule A18-5-5 (required, implementation, partially automated)
Memory management functions shall ensure the following: (a) deterministic
behavior resulting with the existence of worst-case execution time, (b)
avoiding memory fragmentation, (c) avoid running out of memory, (d)
avoiding mismatched allocations or deallocations, (e) no dependence on
non-deterministic calls to kernel.

Rationale

Memory management errors occur commonly and they can affect application stability
and correctness. The main problems of dynamic memory management are as
following:

265 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/5-3-3-ensure-that-the-form-of-delete-matches-the-form-of-new-used-to-allocate-the-memory/
http://www.codingstandard.com/rule/5-3-3-ensure-that-the-form-of-delete-matches-the-form-of-new-used-to-allocate-the-memory/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

• Non deterministic worst-case execution time of allocation and deallocation

• Invalid memory access

• Mismatched allocations and deallocations

• Memory fragmentation

• Running out of memory

Custom memory management functions (custom allocators) need to address all of this
problems for the project and all libraries used in the project.

To ensure the worst-case execution time, the memory management functions need to
be executed without context switch and without syscalls.

To prevent running out of memory, an executable is supposed to define its maximal
memory needs, which are pre-allocated for this executable during its startup.

Memory management functions include operators new and delete, as well as low-
level functions malloc and free. Nevertheless code written in C++ language uses
new and delete operators, and direct use of malloc and free operations do not occur,
some libraries, e.g. exception handling mechanism routines of libgcc uses malloc and
free functions directly and omits new and delete operators usage. Custom memory
management functionality needs to provide custom implementation of C++ new and
delete operators, as well as implementation of malloc and free operations to hide
incorrect dynamic memory allocation/deallocation in linked libraries.

Example

1 //% $Id: A18-5-1.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2

3 #define __GNU_SOURCE

4 #include <dlfcn.h>

5 #include <cstddef>

6

7 void* mallocBad(size_t size) // Non-compliant, malloc from libc does not

8 // guarantee deterministic execution time

9 {

10 void* (*libc_malloc)(size_t) = dlsym(RTLD_NEXT, "malloc");

11 return libc_malloc(size);

12 }

13

14 void freeBad(void* ptr) // Non-compliant, malloc from libc does not guarantee

15 // deterministic execution time

16 {

17 void (*libc_free)(void*) = dlsym(RTLD_NEXT, "free");

18 libc_free(ptr);

19 }

20

21 void* mallocGood(size_t size) // Compliant - custom malloc implementation that

22 // will guarantee deterministic execution time

23 {

266 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

24 // Custom implementation that provides deterministic worst-case execution

25 // time

26 }

27

28 void freeGood(void* ptr) // Compliant - custom malloc implementation that will

29 // guarantee deterministic execution time

30 {

31 // Custom implementation that provides deterministic worst-case execution

32 // time

33 }

See also

• none

Rule A18-5-6 (required, implementation, non-automated)
An analysis shall be performed to analyze the failure modes of dynamic
memory management. In particular, the following failure modes shall be
analyzed: (a) non-deterministic behavior resulting with nonexistence of
worst-case execution time, (b) memory fragmentation, (c) running out of
memory, (d) mismatched allocations and deallocations, (e) dependence on
non-deterministic calls to kernel.

Rationale

The worst-case execution time and behavior of memory management functions are
specific to each implementation. In order to use dynamic memory in the project, an
analysis needs to be done to determine possible errors and worst-case execution time
of allocation and deallocation functions.

Note that standard C++ implementation violates some of this requirements. However,
listed problems can be addressed by implementing a custom memory allocator.

See also

• none

Rule A18-5-7 (required, implementation, non-automated)
If non-realtime implementation of dynamic memory management functions
is used in the project, then memory shall only be allocated and deallocated
during non-realtime program phases.

Rationale

If worst-case execution time of memory management functions can not be determined,
then dynamic memory usage is prohibited during realtime program phase, but it can
be used e.g. during initialization or non-realtime state transitions.

See: Real-time.

Example

267 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1 //% $Id: A18-5-3.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <cstdint>

3 #include <memory>

4 #include <vector>

5 std::int8_t appMainLoop() noexcept

6 {

7 std::int8_t retCode = 0;

8 std::int32_t* arr[10];

9 while (true)

10 {

11 for (std::int8_t i = 0; i < 10; ++i)

12 {

13 arr[i] = new std::int32_t{

14 i}; // Non-compliant - allocation in a phase that

15 // requires real-time

16 }

17 // Implementation

18 for (auto& i : arr)

19 {

20 delete i; // Non-compliant - deallocation in a phase that requires

21 // real-time

22 }

23 }

24 return retCode;

25 }

26 static std::int32_t* object =

27 new std::int32_t{0}; // Compliant- allocating in start-up phase

28

29 int main(int, char**)

30 {

31 std::unique_ptr<std::int32_t> ptr =

32 std::make_unique<std::int32_t>(0); // Compliant

33 std::vector<std::int32_t> vec; // Compliant

34 vec.reserve(10); // Compliant

35

36 std::int8_t code = appMainLoop();

37 return code;

38 }

See also

• none

——————————————————————————

6.18.9 Other runtime support

Rule M18-7-1 (required, implementation, automated)
The signal handling facilities of <csignal> shall not be used.

268 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

See MISRA C++ 2008 [6]

Rule A18-9-1 (required, implementation, automated)
The std::bind shall not be used.

Rationale

Using the std::bind function makes the function call less readable and may lead to the
developer confusing one function parameter with another. Also, compilers are less
likely to inline the functions that are created using std::bind.

It is recommended to use lambda expressions instead.

Example

1 // $Id: A18-9-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <functional>

4 class A

5 {

6 // Implementation

7 };

8 void fn(A const& a, double y) noexcept

9 {

10 // Implementation

11 }

12 void f1() noexcept

13 {

14 double y = 0.0;

15 auto function = std::bind(&fn, std::placeholders::_1, y); // Non-compliant

16 // ...

17 A const a{};

18 function(a);

19 }

20 void f2() noexcept

21 {

22 auto lambda = [](A const& a) -> void {

23 double y = 0.0;

24 fn(a, y);

25 }; // Compliant

26 // ...

27 A const a{};

28 lambda(a);

29 }

See also

• Effective Modern C++ [12]: Item 34: Prefer lambdas to std::bind

Rule A18-9-2 (required, implementation, automated)
Forwarding values to other functions shall be done via: (1) std::move if

269 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

the value is an rvalue reference, (2) std::forward if the value is forwarding
reference.

Rationale

The std::move function unconditionally casts an rvalue reference to rvalue, while the
std::forward function does the same if and only if the argument was initialized with an
rvalue. Both functions should be used as follows:

• std::move should be used for forwarding rvalue references to other functions, as
rvalue reference always bounds to rvalue

• std::forward should be used for forwarding forwarding references to other
functions, as forwarding reference might be bound to lvalue or rvalue

Note that parameter of type “auto&&” is also considered as a forwarding reference for
the purpose of this rule.

Example
1 // $Id: A18-9-2.cpp 271927 2017-03-24 12:01:35Z piotr.tanski $

2 #include <cstdint>

3 #include <string>

4 #include <utility>

5 class A

6 {

7 public:

8 explicit A(std::string&& s)

9 : str(std::move(s)) // Compliant - forwarding rvalue reference

10 {

11 }

12

13 private:

14 std::string str;

15 };

16 class B

17 {

18 };

19 void fn1(const B& lval)

20 {

21 }

22 void fn1(B&& rval)

23 {

24 }

25 template <typename T>

26 void fn2(T&& param)

27 {

28 fn1(std::forward<T>(param)); // Compliant - forwarding forwarding reference

29 }

30 template <typename T>

31 void fn3(T&& param)

32 {

33 fn1(std::move(param)); // Non-compliant - forwarding forwarding reference

270 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

34 // via std::move

35 }

36 void fn4() noexcept

37 {

38 B b1;

39 B& b2 = b1;

40 fn2(b2); // fn1(const B&) is called

41 fn2(std::move(b1)); // fn1(B&&) is called

42 fn3(b2); // fn1(B&&) is called

43 fn3(std::move(b1)); // fn1(B&&) is called

44 }

See also

• HIC++ v4.0 [8]:17.3.2 Use std::forward to forward universal references

• Effective Modern C++ [12]: Item 25. Use std::move on rvalue references,
std::forward on universal references.

Rule A18-9-3 (required, implementation, automated)
The std::move shall not be used on objects declared const or const&.

Rationale

If an object is declared const or const&, then it will actually never be moved using the
std::move.

Example

1 // $Id: A18-9-3.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <utility>

3 class A

4 {

5 // Implementation

6 };

7 void f1()

8 {

9 const A a1{};

10 A a2 = a1; // Compliant - copy constructor is called

11 A a3 = std::move(a1); // Non-compliant - copy constructor is called

12 // implicitly instead of move constructor

13 }

See also

• HIC++ v4.0 [8]: 17.3.1 Do not use std::move on objects declared with const or
const& type.

Rule A18-9-4 (required, implementation, automated)
An argument to std::forward shall not be subsequently used.

271 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-3-2-use-stdforward-to-forward-universal-references/
http://www.codingstandard.com/rule/17-3-1-do-not-use-stdmove-on-objects-declared-with-const-or-const-type/
http://www.codingstandard.com/rule/17-3-1-do-not-use-stdmove-on-objects-declared-with-const-or-const-type/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

Depending on the value category of parameters used in the call, std::forward may
result in a move of the parameter. When the value is an lvalue, modifications to the
parameter will affect the argument of the caller. If the value is an rvalue, the value may
be in indeterminate state after the call to std::forward.

Example

1 // $Id: A18-9-4.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <iostream>

4 #include <utility>

5 template <typename T1, typename T2>

6 void f1(T1 const& t1, T2& t2){

7 // ...

8 };

9 template <typename T1, typename T2>

10 void f2(T1&& t1, T2&& t2)

11 {

12 f1(std::forward<T1>(t1), std::forward<T2>(t2));

13 ++t2; // Non-compliant

14 };

See also

• HIC++ v4.0 [8]: 17.3.3 Do not subsequently use the argument to std::forward.

6.19 Diagnostics library - partial

6.19.4 Error numbers

Rule M19-3-1 (required, implementation, automated)
The error indicator errno shall not be used.

See MISRA C++ 2008 [6]

6.23 Containers library - partial

6.23.1 General

Rule A23-0-1 (required, implementation, automated)
An iterator shall not be implicitly converted to const_iterator.

272 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-3-3-do-not-subsequently-use-the-argument-to-stdforward/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Rationale

The Standard Template Library introduced methods for returning const iterators to
containers. Making a call to these methods and immediately assigning the value they
return to a const_iterator, removes implicit conversions.

Example

1 //% $Id: A23-0-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <cstdint>

3 #include <vector>

4

5 void fn1(std::vector<std::int32_t>& v) noexcept

6 {

7 for (std::vector<std::int32_t>::const_iterator iter{v.cbegin()},

8 end{v.cend()};

9 iter != end;

10 ++iter) // Compliant

11 {

12 // ...

13 }

14 }

15

16 void fn2(std::vector<std::int32_t>& v) noexcept

17 {

18 for (auto iter{v.cbegin()}, end{v.cend()}; iter != end;

19 ++iter) // Compliant

20 {

21 // ...

22 }

23 }

24

25 void fn3(std::vector<std::int32_t>& v) noexcept

26 {

27 for (std::vector<std::int32_t>::const_iterator iter{v.begin()},

28 end{v.end()};

29 iter != end;

30 ++iter) // Non-compliant

31 {

32 // ...

33 }

34 }

See also

• HIC++ v4.0 [8]: 17.4.1 Use const container calls when result is immediately
converted to a const iterator.

273 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://www.codingstandard.com/rule/17-4-1-use-const-container-calls-when-result-is-immediately-converted-to-a-const-iterator/
http://www.codingstandard.com/rule/17-4-1-use-const-container-calls-when-result-is-immediately-converted-to-a-const-iterator/

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.27 Input/output library - partial

6.27.1 General

Rule M27-0-1 (required, implementation, automated)
The stream input/output library <cstdio> shall not be used.

See MISRA C++ 2008 [6]

Rule A27-0-1 (required, implementation, non-automated)
Inputs from independent components shall be validated.

Rationale

An “attacker” who fully or partially controls the content of an application’s buffer can
crash the process, view the content of the stack, view memory content, write to random
memory locations or execute code with permissions of the process.

This rule concerns network inputs, as well as inputs that are received from other
processes or other software components over IPC or through component APIs.

Example
1 // $Id: A27-0-1.cpp 271687 2017-03-23 08:57:35Z piotr.tanski $

2 #include <string.h>

3 #include <cstdint>

4 #include <cstdio>

5 void f1(const char* name) // name restricted to 256 or fewer characters

6 {

7 static const char format[] = "Name: %s .";

8 size_t len = strlen(name) + sizeof(format);

9 char* msg = new char[len];

10

11 if (msg == nullptr)

12 {

13 // Handle an error

14 }

15

16 std::int32_t ret =

17 snprintf(msg,

18 len,

19 format,

20 name); // Non-compliant - no additional check for overflows

21

22 if (ret < 0)

23 {

24 // Handle an error

25 }

26 else if (ret >= len)

27 {

28 // Handle truncated output

274 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

29 }

30

31 fprintf(stderr, msg);

32 delete[] msg;

33 }

34 void f2(const char* name)

35 {

36 static const char format[] = "Name: %s .";

37 fprintf(stderr, format, name); // Compliant - untrusted input passed as one

38 // of the variadic arguments, not as part of

39 // vulnerable format string

40 }

See also

• SEI CERT C++ [9]: FIO30-C. Exclude user input from format strings.

Rule A27-0-2 (required, implementation, automated)
A C-style string shall guarantee sufficient space for data and the null
terminator.

Rationale

To prevent buffer overflows, it needs to be ensured that the destination is of sufficient
size to hold the character data to be copied and the null terminator.

Note that C-style string requires additional space for null character to indicate the end
of the string, while the C++ std::basic_string does that implicitly.

Example

1 // $Id: A27-0-2.cpp 270728 2017-03-16 10:38:20Z piotr.tanski $

2 #include <iostream>

3 #include <string>

4 void f1() noexcept

5 {

6 char buffer[10];

7 std::cin >> buffer; // Non-compliant - this could lead to a buffer overflow

8 }

9 void f2() noexcept

10 {

11 std::string string1;

12 std::string string2;

13 std::cin >> string1 >> string2; // Compliant - no buffer overflows

14 }

15 void f3(std::istream& in) noexcept

16 {

17 char buffer[32];

18

19 try

20 {

21 in.read(buffer, sizeof(buffer));

275 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

22 }

23

24 catch (std::ios_base::failure&)

25 {

26 // Handle an error

27 }

28

29 std::string str(buffer); // Non-compliant - if ’buffer’ is not null

30 // terminated, then constructing std::string leads

31 // to undefined behavior.

32 }

33 void f4(std::istream& in) noexcept

34 {

35 char buffer[32];

36

37 try

38 {

39 in.read(buffer, sizeof(buffer));

40 }

41

42 catch (std::ios_base::failure&)

43 {

44 // Handle an error

45 }

46

47 std::string str(buffer, in.gcount()); // Compliant

48 }

See also

• SEI CERT C++ [9]: STR50-CPP. Guarantee that storage for strings has sufficient
space for character data and the null terminator.

276 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://www.securecoding.cert.org/confluence/display/cplusplus/STR50-CPP.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/cplusplus/STR50-CPP.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

7 References

Bibliography

[1] ISO/IEC 14882:2003, The C++ Standard Incorporating Technical Corrigendum 1,
International Organization for Standardization, 2003.

[2] ISO/IEC 14882:2011, ISO International Standard ISO/IEC 14882:2011(E) -
Programming Language C++, International Organization of Standardization, 2011.

[3] ISO/IEC 14882:2014, ISO International Standard ISO/IEC 14882:2014(E) -
Programming Language C++, International Organization for Standardization, 2016.

[4] ISO 26262-6, Road vehicles - Functional safety - Part 6: Product development at
the software level, International Organization for Standardization, 2011.

[5] ISO 26262-8, Road vehicles - Functional safety - Part 8: Supporting processes,
International Organization for Standardization, 2011.

[6] MISRA C++:2008 Guidelines for the use of the C++ language in critical systems,
The Motor Industry Software Reliability Association, 2008.

[7] Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development
and Demonstration Program, Document Number 2RDU00001 Rev C, Lockheed
Martin Corporation, 2005.

[8] High Integrity C++ Coding Standard Version 4.0, Programming Research Ltd, 2013.

[9] Software Engineering Institute CERT C++ Coding Standard, Software Engineering
Institute Division at Carnegie Mellon University, 2016.

[10] Bjarne Stroustrup, Herb Sutter, C++ Core Guidelines, 2017.

[11] Google C++ Style Guide, Google, 2017.

[12] Scott Meyers, Effective Modern C++, ISBN: 978-1-491-90399-5, O’Reilly, 2015.

[13] Bjarne Stroustrup, The C++ Programming Language, Fourth Edition, ISBN: 978-
0-321-56384-2, Addison-Wesley, 2013.

[14] Joshua Bloch, Effective Java, Second Edition, ISBN: 978-0321356680, Addison-
Wesley, 2008

[15] cppreference.com, online reference for the C and C++ languages and standard
libraries, 2017

[16] stackoverflow.com, community of programmers, 2017

[17] open-std.org, site holding a number of web pages for groups producing open
standards, 2017

277 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

A Traceability to existing standards

This section demonstrates the traceability of AUTOSAR C++14 rules to existing
important C++ coding standards and to ISO 26262.

For each rule, the relation is identified:

1. Identical (only for MISRA C++): the rule text, rationale, exceptions, code example
are identical. Only the rule classification can be different. There can be also an
additional note with clarifications.

2. Small differences: the content of the rule is included by AUTOSAR C++14 rules
with minor differences.

3. Significant differences: the content of the rule is included by AUTOSAR C++14
rules with significant differences.

4. Rejected: the rule in the referred document is rejected by AUTOSAR C++14
guidelines.

5. Implemented (only for ISO 26262): An ISO 26262 clause is implemented by the
AUTOSAR C++14 rules.

6. Not yet analyzed: The rule is not yet analyzed in the current release.

A.1 Traceability to MISRA C++:2008

MISRA C++:2008 [6] is a required prerequisite for readers of the document. MISRA
C++:2008 can be purchased over MISRA web store.

The following table demonstrates the traceability to MISRA C++:2008. This is not
considered as a reproduction of a part of MISRA C++:2008, but a mean to compare
the two standards.

MISRA Rule: Relation type: Related
rule:

Comment:

0-1-1 (Required) A project shall not
contain unreachable code.

1 - Identical M0-1-1 -

0-1-2 (Required) A project shall not
contain infeasible paths.

2 - Small differences M0-1-2 Note about
constexpr functions
added.

0-1-3 (Required) A project shall not
contain unused variables.

1 - Identical M0-1-3 -

0-1-4 (Required) A project shall not
contain non-volatile POD variables
having only one use.

1 - Identical M0-1-4 -

0-1-5 (Required) A project shall not
contain unused type declarations.

1 - Identical M0-1-5 -

278 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

0-1-6 (Required) A project shall
not contain instances of non-volatile
variables being given values that are
never subsequently used.

2 - Small differences A0-1-1 Example reworked.

0-1-7 (Required) The value returned
by a function having a non-void return
type that is not an overloaded operator
shall always be used.

2 - Small differences A0-1-2 Rationale
reformulated.

0-1-8 (Required) All functions with void
return type shall have external side
effect(s).

1 - Identical M0-1-8 -

0-1-9 (Required) There shall be no
dead code.

1 - Identical M0-1-9 -

0-1-10 (Required)
Every defined function shall be called
at least once.

3 - Significant differences M0-1-10,
A0-1-2

Rule divided into:
(1) Identical rule
with obligation level
“Advisory”, (2) Rule
with obligation level
“Required”
which applies to
static functions and
private methods.

0-1-11 (Required) There shall be
no unused parameters (named or
unnamed) in non-virtual functions.

1 - Identical M0-1-11 -

0-1-12 (Required) There shall be
no unused parameters (named or
unnamed) in the set of parameters for
a virtual function and all the functions
that override it.

1 - Identical M0-1-12 -

0-2-1 (Required) An object shall not be
assigned to an overlapping object.

1 - Identical M0-2-1 -

0-3-1 (Document) Minimization of run-
time failures shall be ensured by the
use of at least one of: (a) static
analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit
coding of checks to handle run-time
faults.

1 - Identical M0-3-1 -

0-3-2 (Required) If a function
generates error information, then that
error information shall be tested.

1 - Identical M0-3-2 -

0-4-1 (Document) Use of scaled-
integer or fixed-point arithmetic shall
be documented.

1 - Identical M0-4-1 -

0-4-2 (Document) Use of floating-point
arithmetic shall be documented.

1 - Identical M0-4-2 -

279 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

0-4-3 (Document) Floating-point
implementations shall comply with a
defined floating-point standard.

3 - Significant differences A0-4-1 Specified that
floating-point
implementations
need to
comply with IEEE
754 standard.

1-0-1 (Required) All code shall
conform to ISO/IEC 14882:2003 “The
C++ Standard Incorporating Technical
Corrigendum 1”.

2 - Small differences A1-1-1 Specified that the
code shall conform
to ISO/IEC
14882:2014.

1-0-2 (Document) Multiple compilers
shall only be used if they have a
common, defined interface.

1 - Identical M1-0-2 -

1-0-3 (Document) The implementation
of integer division in the chosen
compiler shall be determined and
documented.

3 - Significant differences A0-4-2 Specified that
the implementation
of integer division
shall comply with
the C++ Language
Standard.

2-2-1 (Document) The character set
and the corresponding encoding shall
be documented.

4 - Rejected - Rule rejected. The
character set
explicitly specified
in A2-2-1.

2-3-1 (Required) Trigraphs shall not be
used.

2 - Small differences A2-5-1 All trigraphs listed
in rationale.
Example extended.

2-5-1 (Advisory) Digraphs should not
be used.

3 - Significant differences A2-6-1 Obligation
level changed to
“Required”.

2-7-1 (Required)
The character sequence /* shall not be
used within a C-style comment.

3 - Significant differences A2-8-4 Using the C-style
comments is not
allowed.

2-7-2 (Required) Sections of code shall
not be commented out using C-style
comments.

2 - Small differences A2-8-1 Commenting-
out code sections
is not allowed.

2-7-3 (Advisory) Sections of code
should not be “commented out” using
C++ comments.

2 - Small differences A2-8-1 Obligation
level changed to
“Required”.
Commenting-
out code sections
is not allowed.

2-10-1 (Required) Different identifiers
shall be typographically unambiguous.

1 - Identical M2-10-1 -

280 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

2-10-2 (Required) Identifiers declared
in an inner scope shall not hide an
identifier declared in an outer scope.

2 - Small differences A2-11-1 Added a note to
rationale. Example
extended.

2-10-3 (Required) A typedef name
(including qualification, if any) shall be
a unique identifier.

1 - Identical M2-10-3 -

2-10-4 (Required) A class, union or
enum name (including qualification, if
any) shall be a unique identifier.

2 - Small differences A2-11-3 “A class, union or
enum
name” changed to
“A user-defined
type name”.
Example extended.

2-10-5 (Advisory) The identifier name
of a non-member object or function
with static storage duration should not
be reused.

3 - Significant differences A2-11-4 Obligation
level changed to
“Required”.
Rationale
reformulated.

2-10-6 (Required) If an identifier refers
to a type, it shall not also refer to an
object or a function in the same scope.

1 - Identical M2-10-6 -

2-13-1 (Required) Only those escape
sequences that are defined in ISO/IEC
14882:2003 shall be used.

2 - Small differences A2-14-1 Standard changed
to ISO/IEC
14882:2014.

2-13-2 (Required) Octal constants
(other than zero) and octal escape
sequences (other than “\0”) shall not
be used.

1 - Identical M2-13-2 -

2-13-3 (Required) A “U” suffix shall
be applied to all octal or hexadecimal
integer literals of unsigned type.

1 - Identical M2-13-3 -

2-13-4 (Required) Literal suffixes shall
be upper case.

1 - Identical M2-13-4 -

2-13-5 (Required)
Narrow and wide string literals shall not
be concatenated.

2 - Small differences A2-14-2 Example extended.

3-1-1 (Required) It shall be possible
to include any header file in multiple
translation units without violating the
One Definition Rule.

3 - Significant differences A3-1-1 Rationale
reformulated.
Example extended.

3-1-2 (Required) Functions shall not be
declared at block scope.

1 - Identical M3-1-2 -

3-1-3 (Required) When an array is
declared, its size shall either be
stated explicitly or defined implicitly by
initialization.

2 - Small differences A3-1-4 Specified that
this rule applies to
arrays with external
linkage only.

3-2-1 (Required) All declarations of
an object or function shall have
compatible types.

1 - Identical M3-2-1 -

281 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

3-2-2 (Required) The One Definition
Rule shall not be violated.

1 - Identical M3-2-2 -

3-2-3 (Required) A type, object or
function that is used in multiple
translation units shall be declared in
one and only one file.

1 - Identical M3-2-3 -

3-2-4 (Required) An identifier with
external linkage shall have exactly one
definition.

1 - Identical M3-2-4 -

3-3-1 (Required) Objects or functions
with external linkage shall be declared
in a header file.

2 - Small differences A3-3-1 Added a note to
rationale. Example
extended.

3-3-2 (Required) If a function has
internal linkage then all re-declarations
shall include the static storage class
specifier.

1 - Identical M3-3-2 -

3-4-1 (Required) An identifier declared
to be an object or type shall be defined
in a block that minimizes its visibility.

1 - Identical M3-4-1 -

3-9-1 (Required) The types used for
an object, a function return type, or a
function parameter shall be token-for-
token identical in all declarations and
re-declarations.

1 - Identical M3-9-1 -

3-9-2 (Advisory) typedefs that indicate
size and signedness should be used in
place of the basic numerical types.

3 - Significant differences M3-9-1 Rule
title and rationale
reformulated to use
types from
<cstdint> header
file. All types that
should be
used were listed.
Example changed.

3-9-3 (Required) The underlying bit
representations of floating-point values
shall not be used.

1 - Identical M3-9-3 -

4-5-1 (Required) Expressions with type
bool shall not be used as operands
to built-in operators other than the
assignment operator =, the logical
operators &&, ||, !, the equality
operators == and !=, the unary &
operator, and the conditional operator.

1 - Identical M4-5-1 -

4-5-2 (Required) Expressions with type
enum shall not be used as operands
to built-in operators other than the
subscript operator [], the assignment
operator =, the equality operators ==
and !=, the unary & operator, and the
relational operators <, <=, >, >=.

3 - Significant differences A4-5-1 Changed the rule
so it applies to
enum classes too.
Rationale
reformulated.
Example extended.

282 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4-5-3 (Required) Expressions with type
(plain) char and wchar_t shall not be
used as operands to built-in operators
other than the assignment operator =,
the equality operators == and !=, and
the unary & operator.

1 - Identical M4-5-3 -

4-10-1 (Required) NULL shall not be
used as an integer value.

1 - Identical M4-10-1 -

4-10-2 (Required) Literal zero (0)
shall not be used as the null-pointer-
constant.

1 - Identical M4-10-2 -

5-0-1 (Required) The value of an
expression shall be the same under
any order of evaluation that the
standard permits.

1 - Identical A5-0-1 Example
rewritten to compile
with C++ compiler

5-0-2 (Advisory) Limited dependence
should be placed on C++ operator
precedence rules in expressions.

1 - Identical M5-0-2 -

5-0-3 (Required) A cvalue expression
shall not be implicitly converted to a
different underlying type.

1 - Identical M5-0-3 -

5-0-4 (Required) An implicit
integral conversion shall not change
the signedness of the underlying type.

1 - Identical M5-0-4 -

5-0-5 (Required) There shall be no
implicit floating-integral conversions.

1 - Identical M5-0-5 -

5-0-6 (Required) An implicit integral
or floating-point conversion shall not
reduce the size of the underlying type.

1 - Identical M5-0-6 -

5-0-7 (Required) There shall be no
explicit floating-integral conversions of
a cvalue expression.

1 - Identical M5-0-7 -

5-0-8 (Required) An explicit integral
or floating-point conversion shall not
increase the size of the underlying type
of a cvalue expression.

1 - Identical M5-0-8 -

5-0-9 (Required) An explicit
integral conversion shall not change
the signedness of the underlying type
of a cvalue expression.

1 - Identical M5-0-9 -

5-0-10 (Required) If the
bitwise operators and « are applied
to an operand with an underlying type
of unsigned char or unsigned short, the
result shall be immediately cast to the
underlying type of the operand.

1 - Identical M5-0-10 -

5-0-11 (Required) The plain char type
shall only be used for the storage and
use of character values.

1 - Identical M5-0-11 -

5-0-12 (Required) signed char and
unsigned char type shall only be used
for the storage and use of numeric
values.

1 - Identical M5-0-12 -

283 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5-0-13 (Required) The condition of
an if-statement and the condition of
an iteration statement shall have type
bool.

2 - Small differences A5-0-2 Example extended.

5-0-14 (Required) The first operand of
a conditional-operator shall have type
bool.

1 - Identical M5-0-14 -

5-0-15 (Required) Array indexing shall
be the only form of pointer arithmetic.

1 - Identical M5-0-15 -

5-0-16 (Required) A pointer operand
and any pointer resulting from pointer
arithmetic using that operand shall
both address elements of the same
array.

1 - Identical M5-0-16 -

5-0-17 (Required) Subtraction between
pointers shall only be applied to
pointers that address elements of the
same array.

1 - Identical M5-0-17 -

5-0-18 (Required) >, >=, <, <= shall not
be applied to objects of pointer type,
except where they point to the same
array.

1 - Identical M5-0-18 -

5-0-19 (Required) The declaration of
objects shall contain no more than two
levels of pointer indirection.

2 - Small differences A5-0-3 Example changed
- typedef replaced
with using.

5-0-20 (Required) Non-constant
operands to a binary bitwise operator
shall have the same underlying type.

1 - Identical M5-0-20 -

5-0-21 (Required) Bitwise operators
shall only be applied to operands of
unsigned underlying type.

1 - Identical M5-0-21 -

5-2-1 (Required) Each operand of a
logical && or ||shall be a postfix
expression.

1 - Identical M5-2-1 -

5-2-2 (Required) A pointer to a virtual
base class shall only be cast to a
pointer to a derived class by means of
dynamic_cast.

1 - Identical M5-2-2 -

5-2-3 (Advisory) Casts from a base
class to a derived class should not be
performed on polymorphic types.

1 - Identical M5-2-3 -

5-2-4 (Required) C-style casts (other
than void casts) and functional notation
casts (other than explicit constructor
calls) shall not be used.

3 - Significant differences A5-2-2 Rule
title and rationale
reformulated,
detailed
explanation and
possible
alternatives added.
Example reworked.

284 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5-2-5 (Required) A cast
shall not remove any const or volatile
qualification from the type of a pointer
or reference.

2 - Small differences A5-2-3 Added a note to
rationale. Example
reworked.

5-2-6 (Required) A cast shall not
convert a pointer to a function to any
other pointer type, including a pointer
to function type.

1 - Identical M5-2-6 -

5-2-7 (Required) An object with pointer
type shall not be converted to an
unrelated pointer type, either directly or
indirectly.

3 - Significant differences A5-2-4 Rule
title and rationale
reformulated to
prohibit
reinterpret_cast
usage. Example
reworked.

5-2-8 (Required) An object with integer
type or pointer to void type shall not
be converted to an object with pointer
type.

1 - Identical M5-2-8 -

5-2-9 (Advisory) A cast shall not
convert a pointer type to an integral
type.

2 - Small differences M5-2-9 Obligation
level changed to
“Required”.

5-2-10 (Advisory) The increment (++)
and decrement (–) operators shall not
be mixed with other operators in an
expression.

2 - Small differences M5-2-10 Obligation
level changed to
“Required”.

5-2-11 (Required)
The comma operator, && operator and
the operator shall not be overloaded.

1 - Identical M5-2-11 -

5-2-12 (Required) An identifier with
array type passed as a function
argument shall not decay to a pointer.

1 - Identical M5-2-12 -

5-3-1 (Required) Each operand of the
! operator, the logical && or the logical
||operators shall have type bool.

1 - Identical M5-3-1 -

5-3-2 (Required) The unary minus
operator shall not be applied to an
expression whose underlying type is
unsigned.

1 - Identical M5-3-2 -

5-3-3 (Required) The unary & operator
shall not be overloaded.

1 - Identical M5-3-3 -

5-3-4 (Required) Evaluation of the
operand to the sizeof operator shall not
contain side effects.

1 - Identical M5-3-4 -

5-8-1 (Required) The right
hand operand of a shift operator shall
lie between zero and one less than the
width in bits of the underlying type of
the left hand operand.

1 - Identical M5-8-1 -

5-14-1 (Required) The right hand
operand of a logical && or ||operator
shall not contain side effects.

1 - Identical M5-14-1 -

285 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5-17-1 (Required) The semantic
equivalence between a binary operator
and its assignment operator form shall
be preserved.

1 - Identical M5-17-1 -

5-18-1
(Required) The comma operator shall
not be used.

1 - Identical M5-18-1 -

5-19-1 (Required) Evaluation of
constant unsigned integer expressions
shall not lead to wrap-around.

2 - Small differences M5-19-1 Obligation
level changed to
“Required”.

6-2-1
(Required) Assignment operators shall
not be used in subexpressions.

1 - Identical M6-2-1 -

6-2-2 (Required)
Floating-point expressions shall not be
directly or indirectly tested for equality
or inequality.

1 - Identical M6-2-2 -

6-2-3 (Required) Before
preprocessing, a null statement shall
only occur on a line by itself; it may
be followed by a comment, provided
that the first character following the null
statement is a white-space character.

1 - Identical M6-2-3 -

6-
3-1 (Required) The statement forming
the body of a switch, while, do ... while
or for statement shall be a compound
statement.

1 - Identical M6-3-1 -

6-4-1 (Required) An if (condition
) construct shall be followed by a
compound statement. The else
keyword shall be followed by either
a compound statement, or another if
statement.

1 - Identical M6-4-1 -

6-4-2 (Required) All if ... else if
constructs shall be terminated with an
else clause.

1 - Identical M6-4-2 -

6-4-
3 (Required) A switch statement shall
be a well-formed switch statement.

1 - Identical M6-4-3 -

6-4-4 (Required) A switch-label shall
only be used when the most closely-
enclosing compound statement is the
body of a switch statement.

1 - Identical M6-4-4 -

6-4-5 (Required) An
unconditional throw or break statement
shall terminate every non-empty switch
clause.

1 - Identical M6-4-5 -

6-4-6 (Required) The final clause of a
switch statement shall be the default-
clause.

1 - Identical M6-4-6 -

286 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6-4-7 (Required) The condition of a
switch statement shall not have bool
type.

1 - Identical M6-4-7 -

6-
4-8 (Required) Every switch statement
shall have at least one case-clause.

3 - Significant differences A6-4-1 Rule reformulated.
Example reworked.

6-5-1 (Required) A for loop shall
contain a single loop-counter which
shall not have floating type.

2 - Small differences A6-5-2 Additional
note about floating
types added. Rule
extended.

6-5-2 (Required) If loop-counter is not
modified by – or ++, then, within
condition, the loop-counter shall only
be used as an operand to <=, <, > or
>=.

1 - Identical M6-5-2 -

6-5-3 (Required) The loop-counter
shall not be modified within condition
or statement.

1 - Identical M6-5-3 -

6-5-4 (Required) The loop-counter
shall be modified by one of: –, ++, -
=n, or +=n; where n remains constant
for the duration of the loop.

1 - Identical M6-5-4 -

6-5-5 (Required) A loop-control-
variable other than the loop-counter
shall not be modified within condition
or expression.

1 - Identical M6-5-5 -

6-
5-6 (Required) A loop-control-variable
other than the loop-counter which is
modified in statement shall have type
bool.

1 - Identical M6-5-6 -

6-6-1 (Required) Any label referenced
by a goto statement shall be declared
in the same block, or in a block
enclosing the goto statement.

1 - Identical M6-6-1 -

6-6-2 (Required) The goto statement
shall jump to a label declared later in
the same function body.

1 - Identical M6-6-2 -

6-6-3 (Required) The continue
statement shall only be used within a
well-formed for loop.

1 - Identical M6-6-3 -

6-6-4 (Required) For any iteration
statement there shall be no more than
one break or goto statement used for
loop termination.

4 - Rejected The goto statement
shall not be used,
see: A6-6-1. There
can be more than
one break in an
iteration statement.

287 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6-6-5 (Required) A function shall have
a single point of exit at the end of the
function.

4 - Rejected Single point of exit
approach does not
necessarily
improve readability,
maintainability and
testability. A
function can have
multiple points of
exit.

7-1-1 (Required) A variable which is
not modified shall be const qualified.

4 - Rejected - Rule replaced with
A7-1-1, A7-1-2 that
concern constexpr
and const
specifiers.

7-1-2 (Required) A pointer or reference
parameter in a function
shall be declared as pointer to const or
reference to const if the corresponding
object is not modified.

1 - Identical M7-1-2 -

7-2-1 (Required) An
expression with enum underlying type
shall only have values corresponding
to the enumerators of the enumeration.

2 - Small differences A7-1-2 Example extended.

7-3-1 (Required) The global
namespace shall only contain main,
namespace declarations and extern
"C" declarations.

1 - Identical M7-3-1 -

7-3-2 (Required) The identifier main
shall not be used for a function other
than the global function main.

1 - Identical M7-3-2 -

7-3-3 (Required) There shall be no
unnamed namespaces in header files.

1 - Identical M7-3-3 -

7-3-4 (Required) Using-directives shall
not be used.

1 - Identical M7-3-4 -

7-3-5 (Required) Multiple declarations
for an identifier in the
same namespace shall not straddle a
using-declaration for that identifier.

1 - Identical M7-3-5 -

7-3-6
(Required) using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

1 - Identical M7-3-6 -

7-4-
1 (Document) All usage of assembler
shall be documented.

1 - Identical M7-4-1 -

7-
4-2 (Required) Assembler instructions
shall only be introduced using the asm
declaration.

1 - Identical M7-4-2 -

7-4-3 (Required) Assembly language
shall be encapsulated and isolated.

1 - Identical M7-4-3 -

288 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

7-5-1 (Required)
A function shall not return a reference
or a pointer to an automatic variable
(including parameters), defined within
the function.

1 - Identical M7-5-1 -

7-5-2 (Required) The address of an
object with automatic storage shall not
be assigned to another object that may
persist after the first object has ceased
to exist.

2 - Small differences M7-5-2 Added
a note saying that
the rule applies to
std::unique_ptr,
std::shared_ptr
and std::weak_ptr
too.

7-5-3 (Required) A function shall not
return a reference or a pointer to a
parameter that is passed by reference
or const reference.

3 - Significant differences A7-5-2 Rule reformulated
so it is allowed to
return a reference
or a pointer to non-
const reference
parameter.
Rationale
reformulated.
Example reworked.

7-5-4 (Advisory) Functions should not
call themselves, either directly or
indirectly.

2 - Small differences A7-5-1 Obligation
level changed to
“Required”.
Example reworked.

8-0-1 (Required) An init-declarator-
list or a member-declarator-list shall
consist of a single init-declarator or
member-declarator respectively.

1 - Identical M8-0-1 -

8-3-1 (Required) Parameters in an
overriding virtual function shall either
use the same default arguments as the
function they override, or else shall not
specify any default arguments.

1 - Identical M8-3-1 -

8-4-1 (Required) Functions shall not be
defined using the ellipsis notation.

3 - Significant differences A8-4-1 Rationale
reformulated.
Added a note that
variadic templates
should be used
instead. Example
extended.

8-4-2 (Required) The identifiers used
for the parameters in a re-declaration
of a function shall be identical to those
in the declaration.

1 - Identical M8-4-2 -

289 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

8-4-3 (Required) All exit paths from a
function with non-void return type shall
have an explicit return statement with
an expression.

2 - Small differences A8-4-2 Rule reformulated
so it applies
to void return type
functions. Example
reworked so there
is no throwing an
exception of type
int.

8-4-4 (Required) A function identifier
shall either be used to call the function
or it shall be preceded by &.

1 - Identical M8-4-4 -

8-5-1 (Required) All variables shall
have a defined value before they are
used.

1 - Identical M8-5-1 -

8-5-2 (Required) Braces shall be used
to indicate and match the structure in
the non-zero initialization of arrays and
structures.

1 - Identical M8-5-2 -

8-5-3 (Required) In an enumerator list,
the = construct shall not be used to
explicitly initialize members other than
the first, unless all items are explicitly
initialized.

3 - Significant differences A7-2-4 Rule and rationale
reformulated.
Example reworked.

9-3-
1 (Required) const member functions
shall not return non-const pointers or
references to class-data.

1 - Identical M9-3-1 -

9-3-2 (Required) Member functions
shall not return non-const handles to
class-data.

2 - Small differences A9-3-1 Explanation
improved.
Example reworked.

9-3-3 (Required) If a member function
can be made static then it shall be
made static, otherwise if it can be
made const then it shall be made
const.

1 - Identical M9-3-3 -

9-5-1 (Required) Unions shall not be
used.

1 - Identical M9-5-1 -

9-6-1 (Required) When the absolute
positioning of bits representing a bit-
field is required, then the behavior
and packing of bit-fields shall be
documented.

1 - Identical M9-6-1 -

9-6-2 (Required) Bit-fields
shall be either bool type or an explicitly
unsigned or signed integral type.

4 - Rejected - Permitted types
changed. New rule
introduced: A9-6-
1.

9-6-3 (Required) Bit-fields shall not
have enum type.

4 - Rejected - Permitted types
changed. New rule
introduced: A9-6-
1.

290 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

9-6-4 (Required) Named bit-fields with
signed integer type shall have a length
of more than one bit.

4 - Rejected - Permitted types
changed. New rule
introduced: A9-6-
1.

10-1-1 (Advisory) Classes should not
be derived from virtual bases

1 - Identical M10-1-1 -

10-1-2 (Required) A base class shall
only be declared virtual if it is used in
a diamond hierarchy.

4 - Rejected - Multiple
inheritance is not
allowed.

10-1-3 (Required) An accessible base
class shall not be both virtual and non-
virtual in the same hierarchy.

1 - Identical M10-1-3 -

10-2-1 (Advisory) All accessible entity
names within a multiple inheritance
hierarchy should be unique.

1 - Identical M10-2-1 -

10-3-1 (Required) There shall be no
more than one definition of each virtual
function on each path through the
inheritance hierarchy.

4 - Rejected - Rule already
covered by A10-1-1
and A10-3-1

10-3-2 (Required) Each overriding
virtual function shall be declared with
the virtual keyword.

3 - Significant differences A10-3-2 Rule and rationale
reformulated so the
override
specifier should be
used instead
of virtual keyword.
Example reworked.

10-3-3 (Required) A virtual function
shall only be overridden by a pure
virtual function if it is itself declared as
pure virtual.

1 - Identical M10-3-3 -

11-0-1 (Required) Member data in non-
POD class types shall be private.

1 - Identical M11-0-1 -

12-1-1 (Required) An object’s dynamic
type shall not be used from the body of
its constructor or destructor.

1 - Identical M12-1-1 -

12-1-2 (Advisory) All constructors of a
class should explicitly call a constructor
for all of its immediate base classes
and all virtual base classes.

3 - Significant differences A12-1-1 Obligation
level changed to
“Required”. Rule
reformulated
to cover non-static
class data
members.
Rationale
reformulated.
Example reworked.

12-1-3 (Required) All constructors that
are callable with a single argument
of fundamental type shall be declared
explicit.

2 - Small differences A12-1-4 Example reworked.

291 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

12-8-1 (Required) A copy constructor
shall only initialize its base classes and
the non-static members of the class of
which it is a member.

3 - Significant differences A12-8-1 Rule reformulated
to cover
move constructors,
too. Rationale
reformulated.
Example reworked.

12-
8-2 (Required) The copy assignment
operator shall be declared protected or
private in an abstract class.

3 - Significant differences A12-8-6 Rule reformulated
to cover move
assignment
operators and all
base
classes. Rationale
reformulated.
Example reworked.

12-
8-2 (Required) The copy assignment
operator shall be declared protected or
private in an abstract class.

3 - Significant differences A12-8-1 Rule reformulated
to cover
move constructors,
too. Rationale
reformulated.
Example reworked.

14-5-1 (Required) A non-
member generic function shall only be
declared in a namespace that is not an
associated namespace.

4 - Rejected - Usage of the
ADL functionality is
allowed. It is also
used in
STL for overloaded
operators lookup in
e.g. out streams,
STL containers.

14-5-2 (Required) A copy constructor
shall be declared when there is a
template constructor with a single
parameter that is a generic parameter.

1 - Identical M14-5-2 -

14-5-3 (Required) A copy assignment
operator shall be declared when there
is a template assignment operator
with a parameter that is a generic
parameter.

1 - Identical M14-5-3 -

14-6-1 (Required) In a class template
with a dependent base, any name that
may be found in that dependent base
shall be referred to using a qualified-id
or this->.

1 - Identical M14-6-1 -

292 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

14-6-2 (Required) The function chosen
by overload resolution shall resolve to
a function declared previously in the
translation unit.

4 - Rejected - Usage of the
ADL functionality is
allowed. It is also
used in
STL for overloaded
operators lookup in
e.g. out streams,
STL containers.

14-7-1 (Required) All class templates,
function templates, class template
member functions and class template
static members shall be instantiated at
least once.

4 - Rejected - It is allowed to not
use all of the public
methods of a class.

14-7-2 (Required)
For any given template specialization,
an explicit instantiation of the template
with the template-arguments used in
the specialization shall not render the
program ill-formed.

3 - Significant differences A14-7-1 Rule reformulated
to explicitly state
what is required.
Example reworked.

14-7-3 (Required) All partial and
explicit specializations for a template
shall be declared in the same file as the
declaration of their primary template.

1 - Identical M14-7-3 -

14-8-1 (Required) Overloaded function
templates shall not be explicitly
specialized.

1 - Identical M14-8-1 -

14-8-2 (Advisory) The viable function
set for a function call should either
contain no function specializations, or
only contain function specializations.

3 - Small differences A14-8-1 Rule slightly
reformulated.
Example
significantly
reworked.

15-0-1 (Document) Exceptions shall
only be used for error handling.

3 - Significant differences A15-0-1 Rule reformulated,
example
significantly
extended.

15-0-2 (Advisory) An exception object
should not have pointer type.

3 - Significant differences A15-1-2 Obligation
level changed, rule
reformulated.

15-0-3 (Required) Control shall not be
transferred into a try or catch block
using a goto or a switch statement.

1 - Identical M15-0-3 -

15-1-1 (Required) The assignment-
expression of a throw statement shall
not itself cause an exception.

1 - Identical M15-1-1 -

15-1-2 (Required) NULL shall not be
thrown explicitly.

1 - Identical M15-1-2 -

15-1-3 (Required)
An empty throw (throw;) shall only be
used in the compound-statement of a
catch handler.

1 - Identical M15-1-3 -

293 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

15-3-1 (Required) Exceptions shall be
raised only after start-up and before
termination of the program.

1 - Identical M15-3-1 -

15-3-2 (Advisory) There should be at
least one exception handler to catch all
otherwise unhandled exceptions.

2 - Small differences A15-3-3 Obligation level
changed. Rule
extended to cover
multi-threading.

15-3-3 (Required) Handlers of
a function-try-block implementation of
a class constructor or destructor shall
not reference non-static members from
this class or its bases.

1 - Identical M15-3-3 -

15-3-4 (Required) Each exception
explicitly thrown in the code shall have
a handler of a compatible type in all call
paths that could lead to that point.

1 - Identical M15-3-4 -

15-
3-5 (Required) A class type exception
shall always be caught by reference.

2 - Small differences A15-3-5 Possibility to catch
by const reference
added

15-3-6 (Required) Where multiple
handlers are provided in a single try-
catch statement or function-try-block
for a derived class and some or all of
its bases, the handlers shall be ordered
most-derived to base class.

1 - Identical M15-3-6 -

15-3-7 (Required) Where multiple
handlers are provided in a single try-
catch statement or function-try-block,
any ellipsis (catch-all) handler shall
occur last.

1 - Identical M15-3-7 -

15-4-1 (Required) If a
function is declared with an exception-
specification, then all declarations of
the same function (in other translation
units) shall be declared with the same
set of type-ids.

4 - Rejected - Dynamic exception
specification was
prohibited.
Noexcept specifier
shall be used
instead.

15-5-1 (Required) A class destructor
shall not exit with an exception.

3 - Significant differences A15-5-1 Rule significantly
extended
with other special
functions and
operators.

15-5-2 (Required) Where a function’s
declaration includes an exception-
specification, the function shall only be
capable of throwing exceptions of the
indicated type(s).

4-Rejected - Dynamic exception
specification was
prohibited.

15-5-3 (Required) The std::terminate()
function shall not be called implicitly.

2 - Small differences A15-5-3 Rationale and
example extended.

294 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

16-0-1 (Required) #include directives
in a file shall only be preceded by other
preprocessor directives or comments.

1 - Identical M16-0-1 -

16-0-2 (Required) Macros shall only
be #define’d or #undef’d in the global
namespace.

1 - Identical M16-0-2 -

16-0-3 (Required) #undef shall not be
used.

4 - Rejected - The
rule replaced with
global rule: A16-0-
1.

16-0-4 (Required) Function-like
macros shall not be defined.

4 - Rejected - The
rule replaced with
global rule: A16-0-
1.

16-0-5 (Required) Arguments to a
function-like macro shall not contain
tokens that look like preprocessing
directives.

1 - Identical M16-0-5 -

16-0-6 (Required) In the definition of
a function-like macro, each instance
of a parameter shall be enclosed in
parentheses, unless it is used as the
operand of # or ##.

1 - Identical M16-0-6 -

16-0-7 (Required) Undefined macro
identifiers shall not be used in #if or
#elif preprocessor directives, except as
operands to the defined operator.

1 - Identical M16-0-7 -

16-0-8 (Required) If the # token
appears as the first token on a line,
then it shall be immediately followed by
a pre-processing token.

1 - Identical M16-0-8 -

16-1-
1 (Required) The defined preprocessor
operator shall only be used in one of
the two standard forms.

1 - Identical M16-1-1 -

16-1-2 (Required) All #else, #elif and
#endif pre-processor directives shall
reside in the same file as the #if
or #ifdef directive to which they are
related.

1 - Identical M16-1-2 -

16-2-1 (Required) The pre-processor
shall only be used for file inclusion and
include guards.

4 - Rejected - The
rule replaced with
global rule: A16-0-
1.

16-2-2 (Required) C++ macros shall
only be used for include guards, type
qualifiers, or storage class specifiers.

4 - Rejected - The
rule replaced with
global rule: A16-0-
1.

16-2-3 (Required) Include guards shall
be provided

1 - Identical M16-2-3 -

295 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

16-2-4 (Required) The ’, ”, /* or //
characters shall not occur in a header
file name.

2 - Small differences A16-2-1 Merged with
MISRA Rule 16-2-
5.

16-2-5 (Advisory) The
character \should not occur in a header
file name.

2 - Small differences A16-2-1 Obligation
level changed to
“Required”.
Merged with
MISRA Rule 16-2-
4.

16-2-6 (Required) The #include
directive shall be followed by either a
<filename> or “filename” sequence.

4 - Rejected - These are the only
forms allowed by
the C++ Language
Standard; No need
for a new rule.

16-3-1 (Required) There shall be at
most one occurrence of the # or ##
operators in a single macro definition.

1 - Identical M16-3-1 -

16-3-2 (Advisory) The # and ##
operators should not be used.

1 - Identical M16-3-2 -

16-6-
1 (Required) All uses of the #pragma
directive shall be documented.

4 - Rejected - The #pragma
directive shall not
be used, see: A16-
7-1.

17-0-1 (Required) Reserved
identifiers, macros and functions in the
standard library shall not be defined,
redefined or undefined.

2 - Small differences A17-0-1 Example extended.

17-0-2 (Required) The names of
standard library macros and objects
shall not be reused.

1 - Identical M17-0-2 -

17-0-3 (Required) The names of
standard library functions shall not be
overridden.

1 - Identical M17-0-3 -

17-0-4 (Required) All library code shall
conform to MISRA C++.

4 - Rejected - The rule
replaced with A17-
0-2 saying that all
code shall conform
to
AUTOSAR C++14
Coding Guidelines.

17-0-5 (Required) The setjmp macro
and the longjmp function shall not be
used.

1 - Identical M17-0-5 -

18-0-1 (Required) The C library shall
not be used.

2 - Small differences A18-0-1 Rule reformulated.

18-0-2 (Required) The library functions
atof, atoi and atol from library <cstdlib>
shall not be used.

2 - Small differences A18-0-2 Compliant
alternatives added
into rationale.

296 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

18-0-3 (Required) The library functions
abort, exit, getenv and system from
library <cstdlib> shall not be used.

1 - Identical M18-0-3 -

18-0-4 (Required) The time handling
functions of library <ctime> shall not be
used.

1 - Identical M18-0-4 -

18-0-5 (Required) The unbounded
functions of library <cstring> shall not
be used.

1 - Identical M18-0-5 -

18-2-1 (Required) The macro offsetof
shall not be used.

1 - Identical M18-2-1 -

18-4-1 (Required) Dynamic heap
memory allocation shall not be used.

4 - Rejected - Dynamic heap
memory allocation
usage is allowed
conditionally, see:
A18-5-1, A18-5-2,
A18-5-3.

18-7-1 (Required) The signal handling
facilities of <csignal> shall not be used.

1 - Identical M18-7-1 -

19-3-1 (Required) The error indicator
errno shall not be used.

1 - Identical M19-3-1 -

27-
0-1 (Required) The stream input/output
library <cstdio> shall not be used.

1 - Identical M27-0-1 -

Table A.1: MISRA C++

A.2 Traceability to HIC++ v4.0

The following table demonstrates the traceability to High Integrity C++ Coding Standard
Version 4.0 [8]. This is not considered as a reproduction, but a mean to compare the
two standards.

This document complies with the conditions of use of HIC++ v4.0, as any rule in this
document that is based on HIC++ v4.0 refers to the related HIC++ v4.0 rule.

HIC++ Rule: Relation type: Related
rule:

Comment:

1.1.1 Ensure that code complies with
the 2011 ISO C++ Language Standard.

2 - Small differences A1-1-1 Specified that the
code shall conform
to ISO/IEC
14882:2014

1.2.1 Ensure that all statements are
reachable.

2 - Small differences M0-1-1

1.2.2 Ensure that no expression or
sub-expression is redundant.

2 - Small differences M0-1-9

1.3.1 Do not use the increment
operator (++) on a variable of type bool

2 - Small differences M4-5-1

1.3.2 Do not use the register keyword. 2 - Small differences A7-1-4

297 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

1.3.3 Do not use the C Standard
Library .h headers

2 - Small differences A18-0-1

1.3.4 Do not use deprecated STL
library features

2 - Small differences A1-1-1, A18-
1-3, A18-9-1

1.3.5 Do not use throw exception
specifications.

2 - Small differences A15-4-1

2.1.1 Do not use tab characters in
source files.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

2.2.1 Do not use digraphs or trigraphs. 2 - Small differences A2-5-1, A2-
6-1

2.3.1 Do not use the C comment
delimiters /* ... */.

2 - Small differences A2-8-4

2.3.2 Do not comment out code. 2 - Small differences A2-8-2
2.4.1 Ensure that each identifier is
distinct from any other visible identifier.

2 - Small differences M2-10-1

2.5.1 Do not concatenate strings with
different encoding prefixes.

2 - Small differences A2-14-2

2.5.2 Do not use octal constants (other
than zero).

2 - Small differences M2-13-2

2.5.3 Use nullptr for the null pointer
constant.

2 - Small differences A4-10-1

3.1.1 Do not hide declarations. 2 - Small differences A2-11-1
3.2.1 Do not declare functions at block
scope.

2 - Small differences M3-1-2

3.3.1 Do not use variables with static
storage duration.

3 - Significant differences A3-3-2 Limited to non-
POD type objects
only.

3.4.1 Do not return a reference or
a pointer to an automatic variable
defined within the function.

2 - Small differences M7-5-1

3.4.2 Do not assign the address of
a variable to a pointer with a greater
lifetime.

2 - Small differences M7-5-2

3.4.3 Use RAII for resources. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not define
rules for coding
patterns. Note that
usage of RAII is
recommended,
see: A15-1-4.

3.5.1 Do not make any assumptions
about the internal representation of a
value or object.

2 - Small differences A3-9-1,
M3-9-3, M5-
0-15, M5-0-
21, M9-5-1,
M18-2-1

298 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

4.1.1 Ensure that a function argument
does not undergo an array-to-pointer
conversion.

2 - Small differences M5-2-12

4.2.1 Ensure that the U suffix is applied
to a literal used in a context requiring
an unsigned integral expression.

2 - Small differences M2-13-2

4.2.2 Ensure that data loss does
not demonstrably occur in an integral
expression.

2 - Small differences A4-7-1, M5-
0-4, M5-0-6,
M5-0-9

4.3.1 Do not convert an expression of
wider floating point type to a narrower
floating point type.

2 - Small differences A4-7-1, M5-
0-6

4.4.1 Do not convert floating values to
integral types except through use of
standard library functions.

4 - Rejected Rules that
are related: M5-0-
3, M5-0-5, M5-0-6,
M5-0-7,

5.1.1 Use symbolic names instead of
literal values in code.

2 - Small differences A5-1-1

5.1.2 Do not rely on the sequence of
evaluation within an expression.

2 - Small differences A5-0-1

5.1.3 Use parentheses in expressions
to specify the intent of the expression.

2 - Small differences A5-
0-1, M5-2-1,
M5-2-10,

5.1.4 Do not capture variables implicitly
in a lambda.

2 - Small differences A5-1-2

5.1.5 Include a (possibly
empty) parameter list in every lambda
expression.

2 - Small differences A5-1-3

5.1.6 Do not code side effects into
the right-hand operands of: &&, ||,
sizeof, typeid or a function passed to
condition_variable::wait.

3 - Significant differences A5-3-1, M5-
3-4, M5-14-1

The condi-
tion_variable::wait
is not yet covered,
this will be ad-
dressed in future
when C++ libraries
are analyzed.

5.2.1 Ensure that pointer or array
access is demonstrably within bounds
of a valid object.

2 - Small differences A5-2-5

5.2.2 Ensure that functions do not call
themselves, either directly or indirectly.

2 - Small differences A7-5-2

5.3.1 Do not apply unary minus to
operands of unsigned type.

2 - Small differences M5-3-2

5.3.2 Allocate memory using new and
release it using delete.

2 - Small differences A18-5-1 Note that operators
new and
delete shall not be
used explicitly, see:
A18-5-2.

299 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

5.3.3 Ensure that the form of delete
matches the form of new used to
allocate the memory.

2 - Small differences A18-5-3 Note that operators
new and
delete shall not be
used explicitly, see:
A18-5-2.

5.4.1 Only use casting forms:
static_cast (excl. void*), dynamic_cast
or explicit constructor call.

2 - Small differences A5-2-1, A5-
2-2, A5-2-3,
A5-2-4

5.4.2 Do not cast an expression to an
enumeration type.

4 - Rejected It is allowed to cast
an expression to an
enumeration type,
but an expression
shall have a value
that corresponds to
an enumerator
of the enumeration,
see: A7-2-1.

5.4.3 Do not convert from a base class
to a derived class.

3 - Small differences M5-2-2, M5-
2-3, A5-2-1

Note that the
dynamic_cast is
unsuitable for use
with real-time
systems.

5.5.1 Ensure that the right hand
operand of the division or remainder
operators is demonstrably non-zero.

2 - Small differences A5-5-1

5.6.1 Do not use bitwise operators with
signed operands.

2 - Small differences M5-0-21

5.7.1 Do not write code that expects
floating point calculations to yield exact
results.

2 - Small differences M6-2-2

5.7.2 Ensure that a pointer to member
that is a virtual function is only
compared (==) with nullptr.

2 - Small differences A5-10-1

5.8.1 Do not use the conditional
operator (?:) as a sub-expression.

2 - Small differences A5-16-1

6.1.1 Enclose the body of a selection or
an iteration statement in a compound
statement.

2 - Small differences M6-3-1, M6-
4-1

6.1.2 Explicitly cover all paths through
multi-way selection statements.

2 - Small differences M6-4-2

6.1.3 Ensure that a non-empty case
statement block does not fall through
to the next label.

2 - Small differences M6-4-5

6.1.4 Ensure that a switch statement
has at least two case labels, distinct
from the default label.

2 - Small differences A6-4-1

6.2.1 Implement a loop that only uses
element values as a range-based loop.

2 - Small differences A6-5-1

6.2.2 Ensure that a loop has a
single loop counter, an optional control
variable, and is not degenerate.

2 - Small differences A6-5-2

300 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

6.2.3 Do not alter a control or counter
variable more than once in a loop.

3 - Significant differences M6-5-3 It is prohibited to
alter a control
or counter variable
within condition or
statement of a
loop.

6.2.4 Only modify a for loop counter in
the for expression.

2 - Small differences M6-5-3

6.3.1 Ensure that the label(s) for a
jump statement or a switch condition
appear later, in the same or an
enclosing block.

2 - Small differences M6-6-1

6.3.2 Ensure that execution of a
function with a non-void return type
ends in a return statement with a value.

2 - Small differences A8-4-2

6.4.1 Postpone variable definitions as
long as possible.

2 - Small differences M3-4-1

7.1.1 Declare each identifier on a
separate line in a separate declaration.

2 - Small differences A7-1-7

7.1.2 Use const whenever possible. 2 - Small differences A7-1-1, A7-
1-2

7.1.3 Do not place type
specifiers before non-type specifiers in
a declaration.

2 - Small differences A7-1-8

7.1.4 Place CV-qualifiers on the right
hand side of the type they apply to.

2 - Small differences A7-1-3

7.1.5 Do not inline large functions. 4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

7.1.6 Use class types or typedefs to
abstract scalar quantities and standard
integer types.

3 - Significant differences A3-9-1 AUTOSAR C++
Coding Guidelines
forces to use
typedefs for built-in
numerical types.

7.1.7 Use a trailing return type in
preference to type disambiguation
using typename.

2 - Small differences A8-2-1

7.1.8 Use auto id = expr when
declaring a variable to have the same
type as its initializer function call.

3 - Significant differences A7-1-5 The
rule is formulated
differently.

7.1.9 Do not explicitly specify the return
type of a lambda.

4 - Rejected To avoid implicit
type conversion
return type of
lambda expression
needs to be
specified explicitly,
see: A5-1-6.

301 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

7.1.10 Use static_assert for assertions
involving compile time constants.

3 - Significant differences A16-6-1 It is recommended
to use the
static_assert
instead of #error
directive.

7.2.1 Use an explicit enumeration base
and ensure that it is large enough to
store all enumerators.

2 - Small differences A7-2-2

7.2.2 Initialize none, the first only or all
enumerators in an enumeration.

2 - Small differences A7-2-4

7.3.1 Do not use using directives. 2 - Small differences M7-3-4
7.4.1 Ensure
that any objects, functions or types to
be used from a single translation unit
are defined in an unnamed namespace
in the main source file.
7.4.2 Ensure that an inline function, a
function template, or a type used from
multiple translation units is defined in a
single header file.

2 - Small differences A3-1-1, M3-
2-2

7.4.3 Ensure that an object or a
function used from multiple translation
units is declared in a single header file.

2 - Small differences A3-1-1, M3-
2-4

7.5.1 Do not use the asm declaration. 2 - Small differences A7-4-1
8.1.1 Do not use multiple levels of
pointer indirection.

3 - Significant differences A5-0-3 At most two levels
of
pointer indirection
are allowed.

8.2.1 Make parameter names absent
or identical in all declarations.

2 - Small differences M3-9-1

8.2.2 Do not declare functions with an
excessive number of parameters.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

8.2.3 Pass small objects with a trivial
copy constructor by value.

4 - Rejected The rule is vague,
“small” has no
technical meaning.

8.2.4 Do not pass std::unique_ptr by
const reference.

2 - Small differences A18-1-5

8.3.1 Do not write functions
with an excessive McCabe Cyclomatic
Complexity.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

8.3.2 Do not write functions with a high
static program path count.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

302 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

8.3.3 Do not use default arguments. 4 - Rejected Using
default arguments
is allowed with
some restrictions,
see e.g. M8-3-1.

8.3.4 Define =delete functions with
parameters of type rvalue reference to
const.

2 - Small differences A13-3-1,
A18-9-3

8.4.1 Do not access an invalid object or
an object with indeterminate value.

2 - Small differences M8-5-1,
A12-8-3

8.4.2 Ensure that a braced aggregate
initializer matches the layout of the
aggregate object.

2 - Small differences M8-5-2

9.1.1 Declare
static any member function that does
not require this. Alternatively, declare
const any member function that does
not modify the externally visible state
of the object.

2 - Small differences M9-3-3

9.1.2 Make default arguments the
same or absent when overriding a
virtual function.

2 - Small differences M8-3-1

9.1.3 Do not return non-const handles
to class data from const member
functions.

2 - Small differences M9-3-1, A9-
3-1

9.1.4 Do not write member functions
which return non-const handles to
data less accessible than the member
function.

3 - Significant differences A9-3-1 It
is allowed to return
non-const handles
to static data.

9.1.5 Do not introduce virtual functions
in a final class.

2 - Small differences A10-3-3

9.2.1 Declare bit-fields
with an explicitly unsigned integral or
enumeration type.

2 - Small differences A9-6-1

10.1.1 Ensure that access to base
class subobjects does not require
explicit disambiguation.

3 - Significant differences A10-1-1 Inheritance
from more than one
base class is
prohibited.

10.2.1 Use
the override special identifier when
overriding a virtual function.

2 - Small differences A10-3-2

10.3.1 Ensure that a derived class has
at most one base class which is not an
interface class.

2 - Small differences A10-1-1 Note that
the definition of an
interface changed,
see: Interface-
Class.

11.1.1 Declare all data members
private.

2 - Small differences M11-0-1

11.2.1 Do not use friend declarations. 2 - Small differences A11-3-1

303 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

12.1.1 Do not declare implicit user
defined conversions.

3 - Significant differences A12-1-4

12.2.1 Declare virtual, private or
protected the destructor of a type used
as a base class.

3 - Significant differences A12-4-1 Destructor of
a base class shall
be public virtual,
public override or
protected
non-virtual.

12.3.1 Correctly declare overloads for
operator new and delete.

4 - Rejected There is no need
for a new rule.

12.4.1 Do not use the dynamic type
of an object unless the object is fully
constructed.

2 - Small differences M12-1-1

12.4.2 Ensure that a constructor
initializes explicitly all base classes and
non-static data members.

2 - Small differences A12-1-1

12.4.3 Do not specify both an NSDMI
and a
member initializer in a constructor for
the same non static member.

2 - Significant differences A12-1-2 Using both NSDMI
and
member initializer
list in one class is
not allowed.

12.4.4 Write
members in an initialization list in the
order in which they are declared.

2 - Small differences A8-5-1

12.4.5 Use delegating constructors to
reduce code duplication.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

12.5.1 Define
explicitly =default or =delete implicit
special member functions of concrete
classes.

3 - Significant differences A12-0-1

12.5.2 Define special members
=default if the behavior is equivalent.

2 - Small differences A12-7-1

12.5.3 Ensure that
a user defined move/copy constructor
only moves/copies base and member
objects.

2 - Small differences A12-8-1

12.5.4 Declare noexcept the move
constructor and move assignment
operator.

3 - Significant differences A15-5-1 AUTOSAR C++
Coding Guidelines
requires
additional functions
to be noexcept.

12.5.5 Correctly reset moved-from
handles to resources in the move
constructor.

2 - Small differences A12-8-1

304 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

12.5.6 Use an atomic, non-throwing
swap operation to implement the copy
and move assignment operators.

2 - Small differences A12-8-2

12.5.7 Declare assignment operators
with the ref-qualifier &.

2 - Small differences A12-8-7

12.5.8 Make the copy assignment
operator of an abstract class protected
or define it =delete.

3 - Significant differences A12-8-6 AUTOSAR C++
Coding Guidelines
requires
additional functions
to be comply with
this rule.

13.1.1 Ensure that all overloads of a
function are visible from where it is
called.

2 - Small differences M7-3-5

13.1.2 If a member of a set of
callable functions includes a universal
reference parameter, ensure that one
appears in the same position for all
other members.

3 - Significant differences A13-3-1 A function taking
“forwarding
reference” shall not
be overloaded.

13.2.1 Do not overload operators with
special semantics.

2 - Small differences M5-2-11,
M5-3-3

13.2.2 Ensure that the return type of an
overloaded binary operator matches
the built-in counterparts.

2 - Small differences A13-
2-1, A13-2-
2, A13-2-3

13.2.3 Declare binary arithmetic and
bitwise operators as non-members.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

13.2.4 When overloading the subscript
operator (operator[]) implement both
const and non-const versions.

2 - Small differences A13-5-1

13.2.5 Implement a minimal set of
operators and use them to implement
all other related operators.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

14.1.1 Use variadic templates rather
than an ellipsis.

3 - Significant differences A8-4-1 AUTOSAR C++
Coding Guidelines
prohibits usage of
variadic
arguments.

14.2.1 Declare template
specializations in the same file as the
primary template they specialize.

2 - Small differences M14-7-3

14.2.2 Do not explicitly specialize a
function template that is overloaded
with other templates.

2 - Small differences M14-8-1

14.2.3 Declare extern an explicitly
instantiated template.

4 - Rejected

305 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

15.1.1 Only use instances of
std::exception for exceptions.

2 - Small differences A15-1-1

15.2.1 Do not throw an exception from
a destructor.

2 - Small differences A15-5-1

15.3.1 Do
not access non-static members from a
catch handler of constructor/destructor
function try block.

2 - Small differences M15-3-3

15.3.2 Ensure that a program does not
result in a call to std::terminate.

2 - Small differences A15-5-2,
A15-5-3

16.1.1 Use the preprocessor only
for implementing include guards, and
including header files with include
guards.

3 - Significant differences A16-0-1 Conditional
and unconditional
file inclusion is
allowed.

16.1.2 Do not include a path specifier
in filenames supplied in #include
directives.

3 - Significant differences A16-2-1 Path specifier /is
allowed to specify
a path relative to
path passed to the
compiler.

16.1.3 Match the filename in a #include
directive to the one on the file system.

4 - Rejected

16.1.4 Use <> brackets for system and
standard library headers. Use quotes
for all other headers.

4 - Rejected The rule defines a
coding style.
Anyway,
these are the only
forms allowed by
the C++ Language
Standard. No need
for a new rule.

16.1.5 Include directly the
minimum number of headers required
for compilation.

4 - Rejected There shall be
no unused include
directives, however
all needed headers
shall be included
explicitly. See:
A16-2-2, A16-2-3.

17.1.1 Do not use std::vector<bool>. 2 - Small differences A18-1-2
17.2.1 Wrap use of the C Standard
Library.

2 - Small differences A17-1-1

17.3.1 Do not use std::move on objects
declared with const or const & type.

2 - Small differences A18-9-3

17.3.2 Use std::forward to forward
universal references.

2 - Small differences A18-9-2

17.3.3 Do not subsequently use the
argument to std::forward.

2 - Small differences A18-9-4

306 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

17.3.4 Do not create smart pointers of
array type.

3 - Significant differences A18-1-4 This especially
concerns
std::shared_ptr,
because
std::unique_ptr
provides partial
specialization for
array types.

17.3.5 Do not create an rvalue
reference of std::array.

4 - Rejected The rule is only a
hint
saying that passing
std::array by rvalue
reference would be
less efficient
than passing it by
reference.
However, usage
depends on the
case, and it should
be allowed to pass
std::array by rvalue
reference.

17.4.1 Use const container calls when
result is immediately converted to a
const iterator.

2 - Small differences A23-0-1

17.4.2 Use API calls that construct
objects in place.

3 - Significant differences A18-5-2 A18-5-
2 prohibits explicit
calls to new and
delete operators,
std::make_shared,
std::make_unique
and similar
constructions are
recommended.

17.5.1 Do not ignore the
result of std::remove, std::remove_if or
std::unique.

2 - Small differences A0-1-2

18.1.1 Do not use platform specific
multi-threading facilities.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.2.1 Use high_integrity::thread in
place of std::thread.

4 - Rejected The
high_integrity::thread
is not part of the
C++ Language
Standard.

307 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

18.2.2 Synchronize access to data
shared between threads using a single
lock.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.2.3 Do not share volatile data
between threads.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.2.4 Use std::call_once rather than
the Double-Checked Locking pattern.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.1 Within the scope of a lock,
ensure that no static path results in a
lock of the same mutex.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.2 Ensure that order of nesting of
locks in a project forms a DAG.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.3 Do not use
std::recursive_mutex.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.4 Only use std::unique_lock when
std::lock_guard cannot be used.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.5 Do not access the members of
std::mutex directly.

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

18.3.6 Do not use relaxed atomics. 5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

308 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

18.4.1 Do
not use std::condition_variable_any on
a std::mutex

5 - Not yet analyzed The “Concurrency”
chapter is not yet
covered, this will
be addressed in
future.

Table A.2: HIC++ v4.0

A.3 Traceability to JSF

The following table demonstrates the traceability to Joint Strike Fighter Air Vehicle C++
Coding Standard [7]. This is not considered as a reproduction, but a mean to compare
the two standards.

Note that the copyright of JSF-AV 2005 allows an unlimited distribution anyway.

JSF Rule: Relation type: Related
rule:

Comment:

AV Rule 8 All code shall conform to
ISO/IEC 14882:2002(E) standard C++.

2 - Small differences A1-1-1

AV Rule 9 Only those characters
specified in the C++ basic source
character set will be used. [...].

2 - Small differences A2-2-1

AV Rule 10 Values of character types
will be restricted to a defined and
documented subset of ISO 10646-1.

5 - Not yet analyzed

AV Rule 11 Trigraphs will not be used. 2 - Small differences A2-5-1
AV Rule 12 The following digraphs will
not be used [...].

2 - Small differences A2-6-1

AV Rule 13 Multi-byte characters and
wide string literals will not be used.

4 - Rejected Agreed for wchar_t
type only, A2-14-3.

AV Rule 14 Literal suffixes shall
use uppercase rather than lowercase
letters.

2 - Small differences M2-13-4

AV Rule 15 Provision shall be
made for run-time checking (defensive
programming).

2 - Small differences M0-3-1

AV Rule 16 Only DO-178B level A [15]
certifiable or SEAL 1 C/C++ libraries
shall be used with safety-critical (i.e.
SEAL 1) code.

4 - Rejected JSF-specific rule.

AV Rule 17 The error indicator errno
shall not be used.

2 - Small differences M19-3-1

AV Rule 18 The macro offsetof, in
library <stddef.h>, shall not be used.

2 - Small differences M18-2-1

AV Rule 19 <locale.h> and the
setlocale function shall not be used.

2 - Small differences A18-0-3

AV Rule 20 The setjmp macro and the
longjmp function shall not be used.

2 - Small differences M17-0-5

309 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 21 The signal handling
facilities of <signal.h> shall not be
used.

2 - Small differences M18-7-1

AV Rule 22 The input /output library
<stdio.h> shall not be used.

2 - Small differences M27-0-1

AV Rule 23 The library functions atof,
atoi and atol from library <stdlib.h>
shall not be used.

2 - Small differences A18-0-2

AV Rule 24 The library functions abort,
exit, getenv and system from library
<stdlib.h> shall not be used.

2 - Small differences M18-0-3

AV Rule 25
The time handling functions of library
<time.h> shall not be used.

2 - Small differences M18-0-4

AV Rule 26 Only the following pre-
processor directives shall be used:
1. #ifndef 2. #define 3. #endif 4.
#include.

2 - Small differences A16-0-1

AV Rule 27 #ifndef, #define and #endif
will be used to prevent
multiple inclusions of the same header
file. Other techniques to prevent the
multiple inclusions of header files will
not be used.

2 - Small differences A16-0-1,
M16-2-3

AV Rule 28 The #ifndef and #endif pre-
processor directives will only be used
as defined in AV Rule 27 to prevent
multiple inclusions of the same header
file.

2 - Small differences A16-0-1

AV Rule 29 The #define pre-processor
directive shall not be used to create
inline macros. Inline functions shall be
used instead.

2 - Small differences A16-0-1

AV Rule 30 The #define pre-processor
directive shall not be used to define
constant values. Instead, the const
qualifier shall
be applied to variable declarations to
specify constant values.

2 - Small differences A16-0-1

AV Rule 31 The #define pre-processor
directive will only be used as part
of the technique to prevent multiple
inclusions of the same header file.

2 - Small differences A16-0-1

AV Rule 32 The #include pre-
processor directive will only be used to
include header (*.h) files.

2 - Small differences A16-0-1

AV Rule 33 The #include directive
shall use the <filename.h> notation to
include header files.

4 - Rejected Including
files using quotes is
also possible.

AV Rule 34 Header files should contain
logically related declarations only.

2 - Small differences A3-3-1

310 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 35 A header file will contain
a mechanism that prevents multiple
inclusions of itself.

2 - Small differences M16-2-3

AV Rule 36 Compilation dependencies
should be minimized when possible.

5 - Not yet analyzed

AV Rule 37 Header (include) files
should include only those header
files that are required for them to
successfully compile. Files that are
only used by the associated .cpp file
should be placed in the .cpp file - not
the .h file.

5 - Not yet analyzed

AV Rule 38 Declarations of classes
that are only accessed via pointers (*)
or references (&) should be supplied
by forward headers that contain only
forward declarations.

5 - Not yet analyzed

AV Rule 39 Header files (*.h) will not
contain non-const variable definitions
or function definitions.

2 - Small differences M3-2-4, A3-
3-1

AV Rule 40 Every implementation file
shall include the header files that
uniquely define the inline functions,
types, and templates used.

2 - Small differences M3-2-4, A3-
3-1

AV Rule 41 Source lines will be kept to
a length of 120 characters or less.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 42
Each expression-statement will be on
a separate line.

5 - Not yet analyzed

AV Rule 43 Tabs should be avoided. 4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 44 All indentations will be at
least two spaces and be consistent
within the same source file.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 45 All words in an identifier will
be separated by the “_” character.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 46 User-specified identifiers
(internal and external) will not rely
on significance of more than 64
characters.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 47 Identifiers will not begin
with the underscore character “_”.

5 - Not yet analyzed

311 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 48 Identifiers will not differ by:
(a) Only a mixture of case, (b) The
presence/absence of the underscore
character, (c) The interchange of the
letter “O”, with the number “0” or the
letter “D”, (d) The interchange of the
letter “I”, with the number “1” or the
letter “l”, (e) The interchange of the
letter “S” with the number “5”, (f) The
interchange of the letter “Z” with the
number “2”, (g) The interchange of the
letter “n” with the letter “h”.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 49 All acronyms in an identifier
will be composed of uppercase letters.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 50 The first word of the name
of a class, structure, namespace,
enumeration, or type created with
typedef will begin with an uppercase
letter. All others letters will be
lowercase.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 51 All letters contained in
function and variable names will be
composed entirely of lowercase letters.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 52 Identifiers for constant and
enumerator values shall be lowercase.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 53 Header files will always
have a file name extension of “.h”.

3 - Significant differences A3-1-2

AV Rule 53.1 The following character
sequences shall not appear in header
file names: ’, \, /*, //, or ”.

2 - Small differences A16-2-1

AV Rule 54 Implementation files will
always have a file name extension of
“.cpp”.

2 - Small differences A3-1-3

AV Rule 55 The name of a header
file should reflect the logical entity for
which it provides declarations.

5 - Not yet analyzed

AV Rule 56 The
name of an implementation file should
reflect the logical entity for which it
provides definitions and have a “.cpp”
extension (this name will normally be
identical to the header file that provides
the corresponding declarations.)

5 - Not yet analyzed

312 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 57 The public, protected, and
private sections
of a class will be declared in that order
(the public section is declared before
the protected section which is declared
before the private section).

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 58 When declaring and
defining functions with more than two
parameters, the leading parenthesis
and the first argument will be written
on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the
last argument).

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 59 The statements forming
the body of an if, else if, else, while,
do...while or for statement shall always
be enclosed in braces, even if the
braces form an empty block.

2 - Small differences M6-3-1

AV Rule 60 Braces (“{}”) which enclose
a block will be placed in the same
column, on separate lines directly
before and after the block.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 61 Braces (“{}”) which enclose
a block will have nothing else on the
line except comments (if necessary).

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 62 The dereference operator
“*” and the address-of operator “&” will
be directly connected with the type-
specifier.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 63 Spaces will not be used
around “.” or “->”, nor between unary
operators and operands.

4 - Rejected Coding style is not
covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 64 A class interface should be
complete and minimal.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 65 A structure should be used
to model an entity that does not require
an invariant.

3 - Significant differences A11-0-2

AV Rule 66 A class should be used
to model an entity that maintains an
invariant.

3 - Significant differences A11-0-1

AV Rule 67 Public and protected data
should only be used in structs - not
classes.

2 - Small differences M11-0-1

313 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 68 Unneeded
implicitly generated member functions
shall be explicitly disallowed.

5 - Not yet analyzed

AV Rule 69 A member function that
does not affect the state of an object
(its instance variables) will be declared
const.

2 - Small differences M9-3-3

AV Rule 70 A class will have friends
only when a function or object requires
access to the private elements of the
class, but is unable to be a member
of the class for logical or efficiency
reasons.

4 - Rejected Friend declarations
are prohibited, see:
A11-3-1.

AV Rule 70.1 An object shall not
be improperly used before its lifetime
begins or after its lifetime ends.

5 - Not yet analyzed

AV Rule 71 Calls to an externally
visible operation of an object, other
than its constructors, shall not be
allowed until the object has been fully
initialized.

5 - Not yet analyzed

AV Rule 71.1 A class’s virtual functions
shall not be invoked from its destructor
or any of its constructors.

2 - Small differences M12-1-1

AV Rule
72 The invariant for a class should be:
(a) a part of the postcondition of every
class constructor, (b) a part of the
precondition of the class destructor (if
any), (c) a part of the precondition and
postcondition of every other publicly
accessible operation.

5 - Not yet analyzed

AV Rule 73 Unnecessary default
constructors shall not be defined.

5 - Not yet analyzed

AV Rule 74 Initialization of nonstatic
class members will be performed
through the member initialization list
rather than through assignment in the
body of a constructor.

2 - Small differences A12-6-1

AV Rule 75 Members
of the initialization list shall be listed in
the order in which they are declared in
the class.

2 - Small differences A8-5-1

AV Rule 76 A copy constructor and an
assignment operator shall be declared
for classes that contain pointers to data
items or nontrivial destructors.

5 - Not yet analyzed

AV Rule 77 A copy constructor shall
copy all data members and bases
that affect the class invariant (a data
element representing a cache, for
example, would not need to be copied).

5 - Not yet analyzed

314 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 77.1 A copy constructor shall
copy all data members and bases
that affect the class invariant (a data
element representing a cache, for
example, would not need to be copied).

5 - Not yet analyzed

AV Rule 78 All base classes with a
virtual function shall define a virtual
destructor.

2 - Small differences A12-4-1

AV Rule 79 All resources acquired by
a class shall be released by the class’s
destructor.

5 - Not yet analyzed

AV Rule 80 The default copy and
assignment operators will be used for
classes when those operators offer
reasonable semantics.

5 - Not yet analyzed

AV Rule 81 The assignment operator
shall handle self-assignment correctly.

2 - Small differences A12-8-5

AV Rule 82 An assignment operator
shall return a reference to *this.

5 - Not yet analyzed

AV Rule 83 An assignment operator
shall assign all data members and
bases that affect the class invariant (a
data element representing a cache, for
example, would not need to be copied).

5 - Not yet analyzed

AV Rule 84 Operator overloading
will be used sparingly and in a
conventional manner.

5 - Not yet analyzed

AV Rule 85 When two operators are
opposites (such as == and !=), both will
be defined and one will be defined in
terms of the other.

5 - Not yet analyzed

AV Rule 86 Concrete types should be
used to represent simple independent
concepts.

5 - Not yet analyzed

AV Rule 87 Hierarchies should be
based on abstract classes.

5 - Not yet analyzed

AV Rule 88 Multiple inheritance shall
only be allowed in the following
restricted form: n interfaces plus m
private implementations, plus at most
one protected implementation.

3 - Significant differences A10-1-1

AV Rule 88.1 A stateful virtual base
shall be explicitly declared in each
derived class that accesses it.

4 - Rejected Virtual inheritance
should not be used,
see: M10-1-1.

AV Rule 89 A base class shall not be
both virtual and non-virtual in the same
hierarchy.

2 - Small differences M10-1-3

AV Rule 90 Heavily used
interfaces should be minimal, general
and abstract.

5 - Not yet analyzed

AV Rule 91 Public inheritance will be
used to implement “is-a” relationships.

5 - Not yet analyzed

315 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 92 A subtype (publicly
derived classes) will conform to the
following guidelines with respect to all
classes involved in the polymorphic
assignment of different subclass
instances to the same variable or
parameter during the execution of the
system: (1) Preconditions of derived
methods must be at least as weak as
the preconditions of the methods they
override. (2) Postconditions of derived
methods must be at least as strong
as the postconditions of the methods
they override. In other words, subclass
methods must expect less and deliver
more than the base class methods
they override. This rule implies that
subtypes will conform to the Liskov
Substitution Principle.

5 - Not yet analyzed

AV Rule 93 “has-a” or “is-implemented-
in-terms-of” relationships will be
modeled through membership or non-
public inheritance.

5 - Not yet analyzed

AV Rule 94 An inherited nonvirtual
function shall not be redefined in a
derived class.

2 - Small differences A10-2-1

AV Rule 95 An inherited default
parameter shall never be redefined.

2 - Small differences M8-3-1

AV Rule 97 Arrays shall not be used
in interfaces. Instead, the Array class
should be used.

2 - Small differences M5-2-12

AV Rule 97.1 Neither operand of an
equality operator (== or !=) shall be a
pointer to a virtual member function.

5 - Not yet analyzed

AV Rule 98 Every nonlocal name,
except main(), should be placed in
some namespace.

2 - Small differences M7-3-1

AV Rule 99 Namespaces will not be
nested more than two levels deep.

To be discussed.

AV Rule 100
Elements from a namespace should
be selected as follows: (a) using
declaration or explicit qualification for
few (approximately five) names, (b)
using directive for many names.

3 - Significant differences M7-3-4, M7-
3-6

AV Rule 101 Templates shall be
reviewed as follows: (1) with respect
to the template in isolation considering
assumptions or requirements placed
on its arguments, (2) with respect
to all functions instantiated by actual
arguments.

5 - Not yet analyzed

316 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 102 Template tests shall be
created to cover all actual template
instantiations.

5 - Not yet analyzed

AV Rule 103 Constraint checks should
be applied to template arguments.

5 - Not yet analyzed

AV Rule 104 A template specialization
shall be declared before its use.

5 - Not yet analyzed

AV Rule 105 A template definition’s
dependence
on its instantiation contexts should be
minimized.

5 - Not yet analyzed

AV Rule 106 Specializations for pointer
types should be made where
appropriate.

5 - Not yet analyzed

AV Rule 107 Functions shall always be
declared at file scope.

2 - Small differences M3-1-2

AV Rule 108 Functions with variable
numbers of arguments shall not be
used.

2 - Small differences A8-4-1

AV Rule 109 A function definition
should not be placed in a class
specification unless the function is
intended to be inlined.

5 - Not yet analyzed

AV Rule 110 Functions with more than
7 arguments will not be used.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 111 A function shall not return
a pointer or reference to a non-static
local object.

2 - Small differences M7-5-2

AV Rule
112 Function return values should not
obscure resource ownership.

5 - Not yet analyzed

AV Rule 113 Functions will have a
single exit point.

4 - Rejected Multiple points of
exit are permitted
by AUTOSAR C++
Coding Guidelines.

AV Rule 114 All exit points of value-
returning functions shall be through
return statements.

2 - Small differences A8-4-2

AV Rule 115 If a function returns error
information, then that error information
will be tested.

2 - Small differences A8-4-2

AV Rule 116 Small, concrete-type
arguments (two or three words in size)
should be passed by value if changes
made to formal parameters should not
be reflected in the calling function.

5 - Not yet analyzed

AV Rule 117 Arguments should be
passed by reference if NULL values
are not possible.

5 - Not yet analyzed

317 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 117.1 An object should be
passed as const T& if the function
should not change the value of the
object.

5 - Not yet analyzed

AV Rule 117.2 An object should be
passed as T& if the function may
change the value of the object.

5 - Not yet analyzed

AV Rule 118 Arguments should be
passed via pointers if NULL values are
possible.

5 - Not yet analyzed

AV Rule 118.1 An object should be
passed as const T* if its value should
not be modified.

5 - Not yet analyzed

AV Rule 118.2 An object should be
passed as T* if its value may be
modified.

5 - Not yet analyzed

AV Rule 119 Functions shall not call
themselves, either directly or indirectly
(i.e. recursion shall not be allowed).

2 - Small differences A7-5-2

AV Rule 120 Overloaded operations
or methods should form families that
use the same semantics, share the
same name, have the same purpose,
and that are differentiated by formal
parameters.

5 - Not yet analyzed

AV Rule 121 Only functions with 1
or 2 statements should be considered
candidates for inline functions.

4 - Rejected Code metrics are
not covered
by AUTOSAR C++
Coding Guidelines.

AV Rule 122 Trivial accessor and
mutator functions should be inlined.

5 - Not yet analyzed

AV Rule 123 The number of accessor
and mutator functions should be
minimized.

5 - Not yet analyzed

AV Rule 124 Trivial forwarding
functions should be inlined.

5 - Not yet analyzed

AV Rule 125 Unnecessary temporary
objects should be avoided.

5 - Not yet analyzed

AV Rule 126 Only valid C++ style
comments (//) shall be used.

4 - Rejected

AV Rule 127 Code that is not used
(commented out) shall be deleted.

2 - Small differences A2-8-2

AV Rule 128 Comments that document
actions or sources (e.g. tables, figures,
paragraphs, etc.) outside of the file
being documented will not be allowed.

5 - Not yet analyzed

AV Rule 129 Comments in header files
should describe the externally visible
behavior of the functions or classes
being documented.

3 - Significant differences A2-8-3

318 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 130 The purpose of every
line of executable code should be
explained by a comment, although one
comment may describe more than one
line of code.

4 - Rejected

AV Rule 131 One should avoid stating
in comments what is better stated in
code (i.e. do not simply repeat what
is in the code).

4 - Rejected

AV Rule 132 Each variable declaration,
typedef, enumeration value, and
structure member will be commented.

4 - Rejected

AV Rule 133 Every source file will
be documented with an introductory
comment that
provides information on the file name,
its contents, and any program-required
information (e.g. legal statements,
copyright information, etc).

4 - Rejected

AV Rule 134 Assumptions (limitations)
made by
functions should be documented in the
function’s preamble.

3 - Significant differences A2-8-3

AV Rule 135 Identifiers in an inner
scope shall not use the same name
as an identifier in an outer scope, and
therefore hide that identifier.

2 - Small differences A2-11-1

AV Rule 136 Declarations should be at
the smallest feasible scope.

2 - Small differences M3-4-1

AV Rule 137 All declarations at file
scope should be static where possible.

3 - Significant differences A3-3-1

AV Rule 138 Identifiers shall not
simultaneously have both internal and
external linkage in the same translation
unit.

2 - Small differences M3-3-2

AV Rule 139 External objects will not
be declared in more than one file.

2 - Small differences M3-2-3

AV Rule 140 The register storage class
specifier shall not be used.

2 - Small differences A7-1-4

AV Rule 141 A class, structure, or
enumeration will not be declared in the
definition of its type.

5 - Not yet analyzed

AV Rule 142 All variables shall be
initialized before use.

2 - Small differences M8-5-1

AV Rule 143 Variables will not be
introduced until they can be initialized
with meaningful values.

2 - Small differences M3-4-1

AV Rule 144 Braces shall be used
to indicate and match the structure in
the non-zero initialization of arrays and
structures.

2 - Small differences M8-5-2

319 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 145 In an enumerator list,
the “=” construct shall not be used to
explicitly initialize members other than
the first, unless all items are explicitly
initialized.

2 - Small differences A7-2-4

AV Rule 146
Floating point implementations shall
comply with a defined floating point
standard. The standard that will be
used is the ANSI/IEEE Std 754

2 - Small differences A0-4-1

AV Rule
147 The underlying bit representations
of floating point numbers shall not be
used in any way by the programmer.

2 - Small differences M3-9-3

AV Rule 148 Enumeration types shall
be used instead of integer types (and
constants) to select from a limited
series of choices.

5 - Not yet analyzed

AV Rule 149 Octal constants (other
than zero) shall not be used.

2 - Small differences M2-13-2

AV Rule 150 Hexadecimal constants
will be represented using all uppercase
letters.

5 - Not yet analyzed

AV Rule 151 Numeric values in code
will not be used; symbolic values will
be used instead.

2 - Small differences A5-1-1

AV Rule 151.1 A string literal shall not
be modified.

5 - Not yet analyzed

AV Rule
152 Multiple variable declarations shall
not be allowed on the same line.

5 - Not yet analyzed

AV Rule 153 Unions shall not be used. 2 - Small differences M9-5-1
AV Rule 154
Bit-fields shall have explicitly unsigned
integral or enumeration types only.

2 - Small differences A9-6-1

AV Rule 155 Bit-fields will not be used
to pack data into a word for the sole
purpose of saving space.

5 - Not yet analyzed

AV Rule 156 All the members of a
structure (or class) shall be named and
shall only be accessed via their names.

5 - Not yet analyzed

AV Rule 157 The right hand operand of
a && or ||operator shall not contain side
effects.

2 - Small differences M5-14-1

AV Rule 158 The operands of a logical
&& or ||shall be parenthesized if the
operands contain binary operators.

2 - Small differences M5-2-1

AV Rule 159 Operators ||, &&, and
unary & shall not be overloaded.

2 - Small differences M5-2-11,
M5-3-3

AV Rule 160 An assignment
expression shall be used only as the
expression in an expression statement.

2 - Small differences M6-2-1

320 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 162 Signed and unsigned
values shall not be mixed in arithmetic
or comparison operations.

5 - Not yet analyzed

AV Rule 163 Unsigned arithmetic shall
not be used.

5 - Not yet analyzed

AV Rule 164 The right hand operand of
a shift operator shall lie between zero
and one less than the width in bits of
the left-hand operand (inclusive).

2 - Small differences M5-8-1

AV Rule 164.1 The left-hand operand
of a right-shift operator shall not have a
negative value.

5 - Not yet analyzed

AV Rule 165 The unary minus operator
shall not be applied to an unsigned
expression.

2 - Small differences M5-3-2

AV Rule 166 The sizeof operator
will not be used on expressions that
contain side effects.

2 - Small differences M5-3-4

AV Rule 167 The implementation of
integer division in the chosen compiler
shall be determined, documented and
taken into account.

3 - Significant differences A0-4-2

AV Rule 168 The comma operator shall
not be used.

2 - Small differences M5-18-1

AV Rule 169 Pointers to pointers
should be avoided when possible.

3 - Significant differences A5-0-3

AV Rule 170 More than 2 levels of
pointer indirection shall not be used.

3 - Significant differences A5-0-3

AV Rule 171 Relational operators shall
not be applied to pointer types except
where both operands are of the same
type and point to: (a) the same object,
(b) the same function, (c) members of
the same object, or (d) elements of the
same array (including one past the end
of the same array).

2 - Small differences M5-0-18

AV Rule 173 The address of an object
with automatic storage shall not be
assigned to an object which persists
after the object has ceased to exist.

2 - Small differences M7-5-2

AV Rule 174 The null pointer shall not
be de-referenced.

5 - Not yet analyzed

AV Rule 175 A pointer shall not be
compared to NULL or be assigned
NULL; use plain 0 instead.

4 - Rejected Only nullptr
constant shall be
used, see: A4-10-
1.

AV Rule 176 A typedef will be
used to simplify program syntax when
declaring function pointers.

5 - Not yet analyzed

AV Rule 177 User-defined conversion
functions should be avoided.

5 - Not yet analyzed

321 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 178 Down casting (casting
from base to derived class) shall only
be allowed through one of the following
mechanism: (a) Virtual functions that
act like dynamic casts (most likely
useful in relatively simple cases), (b)
Use of the visitor (or similar) pattern
(most likely useful in complicated
cases)

5 - Not yet analyzed

AV Rule 179 A pointer to a virtual
base class shall not be converted to a
pointer to a derived class.

5 - Not yet analyzed

AV Rule 180 Implicit conversions that
may result in a loss of information shall
not be used.

5 - Not yet analyzed

AV Rule 181 Redundant explicit casts
will not be used.

5 - Not yet analyzed

AV Rule 182 Type casting from any
type to or from pointers shall not be
used.

5 - Not yet analyzed

AV Rule 183 Every possible measure
should be taken to avoid type casting.

5 - Not yet analyzed

AV Rule 184 Floating
point numbers shall not be converted
to integers unless such a conversion is
a specified algorithmic requirement or
is necessary for a hardware interface.

2 - Small differences M5-0-5

AV
Rule 185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall
be used instead of the traditional C-
style casts.

2 - Small differences A5-2-2

AV Rule 186 There shall be no
unreachable code.

2 - Small differences M0-1-1

AV Rule 187 All non-null statements
shall potentially have a side-effect.

2 - Small differences M0-1-9

AV Rule 188 Labels will not be used,
except in switch statements.

3 - Significant differences A6-6-1

AV Rule 189 The goto statement shall
not be used.

2 - Small differences A6-6-1

AV Rule 190 The continue statement
shall not be used.

4 - Rejected The continue
statement usage is
allowed within for-
loops, see: M6-6-3.

AV Rule 191 The break statement shall
not be used (except to terminate the
cases of a switch statement).

2 - Small differences M6-4-5

AV Rule 192 All if, else if constructs
will contain either a final else clause or
a comment indicating why a final else
clause is not necessary.

2 - Small differences M6-4-2

322 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 193 Every non-empty case
clause in a switch statement shall be
terminated with a break statement.

2 - Small differences M6-4-3, M6-
4-5

AV Rule 194 All switch statements
that do not intend to test for every
enumeration value shall contain a final
default clause.

2 - Small differences M6-4-6

AV Rule 195 A switch expression will
not represent a Boolean value.

2 - Small differences M6-4-7

AV Rule 196 Every switch statement
will have at least two cases and a
potential default.

2 - Small differences A6-4-1

AV Rule 197 Floating point variables
shall not be used as loop counters.

2 - Small differences M6-5-2

AV Rule 198 The initialization
expression in a for loop will perform no
actions other than to initialize the value
of a single for loop parameter.

5 - Not yet analyzed

AV Rule 199 The increment expression
in a for loop will perform no action other
than to change a single loop parameter
to the next value for the loop.

5 - Not yet analyzed

AV Rule 200 Null initialize or increment
expressions in for loops will not be
used; a while loop will be used instead.

3 - Significant differences A6-5-2

AV Rule 201 Numeric variables being
used within a for loop for iteration
counting shall not be modified in the
body of the loop.

2 - Small differences M6-5-3

AV Rule 202 Floating point variables
shall not be tested for exact equality or
inequality.

2 - Small differences M6-2-2

AV Rule 203 Evaluation of expressions
shall not lead to overflow/underflow
(unless required algorithmically and
then should be heavily documented).

2 - Small differences M5-19-1,
A7-1-2

AV Rule 204 A single operation with
side-effects shall only be used in the
following contexts: 1. by itself 2.
the right-hand side of an assignment
3. a condition 4. the only argument
expression with a side-effect in a
function call 5. condition of a loop 6.
switch condition 7. single part of a
chained operation.

5 - Not yet analyzed

AV Rule 204.1 The value of an
expression shall be the same under
any order of evaluation that the
standard permits.

2 - Small differences A5-0-1

AV Rule 205 The volatile keyword shall
not be used unless directly interfacing
with hardware.

5 - Not yet analyzed

323 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 206 Allocation/deallocation
from/to the free store (heap) shall not
occur after initialization.

2 - Small differences A18-5-3

AV Rule 207 Unencapsulated global
data will be avoided.

5 - Not yet analyzed

AV Rule 208 C++ exceptions shall not
be used (i.e. throw, catch and try shall
not be used.)

4 - Rejected C++
exceptions may be
used conditionally.

AV Rule 209 The basic types of
int, short, long, float and double
shall not be used, but specific-
length equivalents should be typedef’d
accordingly for each compiler, and
these type names used in the code.

2 - Small differences A3-9-1

AV Rule 210 Algorithms shall not make
assumptions concerning how data is
represented in memory (e.g. big
endian
vs. little endian, base class subobject
ordering in derived classes, nonstatic
data member ordering across access
specifiers, etc.)

5 - Not yet analyzed

AV Rule 210.1 Algorithms shall not
make assumptions concerning the
order of allocation of nonstatic data
members separated by an access
specifier.

5 - Not yet analyzed

AV Rule 211 Algorithms shall not
assume that shorts, ints, longs, floats,
doubles or long doubles begin at
particular addresses.

5 - Not yet analyzed

AV Rule 212 Underflow or overflow
functioning shall not be depended on
in any special way.

5 - Not yet analyzed

AV Rule 213 No dependence shall be
placed on C++’s operator precedence
rules, below arithmetic operators, in
expressions.

2 - Small differences A5-0-1

AV Rule 214 Assuming that non-local
static objects, in separate translation
units, are initialized in a special order
shall not be done.

5 - Not yet analyzed

AV Rule 215 Pointer arithmetic will not
be used.

3 - Significant differences M5-0-15 Pointer arithmetic
may be used for
array indexing.

AV Rule 216 Programmers should not
attempt to prematurely optimize code.

5 - Not yet analyzed

AV Rule 217 Compile-time and link-
time errors should be preferred over
run-time errors.

5 - Not yet analyzed

324 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

AV Rule 218 Compiler warning levels
will be set in compliance with project
policies.

3 - Significant differences A1-1-2

AV Rule 219 All tests applied to a
base class interface shall be applied
to all derived class interfaces as well.
If the derived class poses stronger
postconditions/invariants, then the new
postconditions /invariants shall be
substituted in the derived class tests.

5 - Not yet analyzed

AV Rule 220 Structural coverage
algorithms shall be applied against
flattened classes.

5 - Not yet analyzed

AV Rule 221 Structural coverage
of a class within an inheritance
hierarchy containing virtual functions
shall include testing every possible
resolution for each set of identical
polymorphic references.

5 - Not yet analyzed

Table A.3: JSF

A.4 Traceability to SEI CERT C++

The following table demonstrates the traceability to SEI CERT C++ Coding Standard
[9]. This is not considered as a reproduction, but a mean to compare the two standards.

Note that the copyright of SEI CERT C++ Coding Standard allows an unlimited
distribution anyway.

SEI CERT Rule: Relation type: Related
rule:

Comment:

DCL30-C. Declare objects with
appropriate storage durations.

2 - Small differences M7-5-2

DCL40-C. Do not create incompatible
declarations of the same function or
object.

2 - Small differences M3-9-1

DCL50-CPP. Do not define a C-style
variadic function.

2 - Small differences A8-4-1

DCL51-CPP. Do not declare or define
a reserved identifier.

2 - Small differences A13-1-2,
A17-0-1

DCL52-CPP. Never qualify a reference
type with const or volatile.

5 - Not yet analyzed

DCL53-CPP. Do not write syntactically
ambiguous declarations.

2 - Small differences A8-5-2

DCL54-CPP. Overload allocation and
deallocation functions as a pair in the
same scope.

3 - Significant differences A18-5-3,
A18-5-4

DCL55-
CPP. Avoid information leakage when
passing a class object across a trust
boundary.

5 - Not yet analyzed

325 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

DCL56-CPP. Avoid cycles during
initialization of static objects.

5 - Not yet analyzed

DCL57-CPP. Do not
let exceptions escape from destructors
or deallocation functions.

2 - Significant differences A15-5-1 AUTOSAR C++
Coding Guidelines
specifies more
functions that need
to be noexcept.

DCL58-CPP. Do not modify the
standard namespaces.

5 - Not yet analyzed

DCL59-CPP. Do not define
an unnamed namespace in a header
file.

2 - Small differences M7-3-3

DCL60-CPP. Obey the one-definition
rule.

2 - Small differences M3-2-2

EXP34-C. Do not dereference null
pointers.

5 - Not yet analyzed

EXP35-C. Do not modify objects with
temporary lifetime.

5 - Not yet analyzed

EXP36-C. Do not cast pointers into
more strictly aligned pointer types.

5 - Not yet analyzed

EXP37-C. Call functions with the
correct number and type of arguments.

5 - Not yet analyzed

EXP39-C. Do not access a variable
through a pointer of an incompatible
type.

5 - Not yet analyzed

EXP42-C. Do not compare padding
data.

5 - Not yet analyzed

EXP45-C. Do not perform assignments
in selection statements.

2 - Small differences A5-0-2, M6-
2-1

EXP46-C. Do not use a bitwise
operator with a Boolean-like operand.

4 - Rejected Use
of bitwise operators
restricted
to following cases:
M5-0-10, M5-0-20,
M5-0-21.

EXP47-C. Do not call va_arg with an
argument of the incorrect type.

4 - Rejected Use of
variable arguments
are prohibited, see:
A8-4-1.

EXP50-CPP. Do not depend on the
order of evaluation for side effects.

2 - Small differences A5-0-1

EXP51-CPP. Do not delete an array
through a pointer of the incorrect type.

5 - Not yet analyzed

EXP52-CPP. Do not rely on side effects
in unevaluated operands.

3 - Significant differences M5-3-4, A5-
3-1

EXP53-CPP. Do not read uninitialized
memory.

5 - Not yet analyzed

EXP54-CPP. Do not access an object
outside of its lifetime.

5 - Not yet analyzed

326 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

EXP55-CPP. Do not
access a cv-qualified object through a
cv-unqualified type.

2 - Small differences A5-2-3

EXP56-CPP. Do not call a function with
a mismatched language linkage.

5 - Not yet analyzed

EXP57-CPP. Do not cast or delete
pointers to incomplete classes.

5 - Not yet analyzed

EXP58-CPP. Pass an object of the
correct type to va_start.

4 - Rejected Use of
variable arguments
are prohibited, see:
A8-4-1.

EXP59-CPP. Use offsetof() on valid
types and members.

4 - Rejected Use of offsetof()
is prohibited, see:
M18-2-1.

EXP60-CPP.
Do not pass a nonstandard-layout type
object across execution boundaries.

5 - Not yet analyzed

EXP61-CPP. A lambda object must not
outlive any of its reference captured
objects.

2 - Small differences A5-1-4

EXP62-CPP. Do not access the bits of
an object
representation that are not part of the
object’s value representation.

5 - Not yet analyzed

EXP63-CPP. Do not rely on the value
of a moved-from object.

2 - Small differences A12-8-3

INT30-C. Ensure that unsigned integer
operations do not wrap.

2 - Small differences A4-7-1, M5-
19-1

INT31-C. Ensure
that integer conversions do not result
in lost or misinterpreted data.

3 - Significant differences A4-7-1, M5-
0-15

INT32-C. Ensure that operations on
signed integers do not result in
overflow.

2 - Small differences A4-7-1

INT33-C. Ensure that division and
remainder operations do not result in
divide-by-zero errors.

2 - Small differences A5-5-1

INT34-C. Do not shift an expression by
a negative number of bits or by greater
than or equal to the number of bits that
exist in the operand.

2 - Small differences M5-8-1

INT35-C. Use correct integer
precisions.

3 - Significant differences A3-9-1

INT36-C. Converting a pointer to
integer or integer to pointer.

2 - Small differences M5-2-8, M5-
2-9

INT50-CPP. Do not cast to an out-of-
range enumeration value.

2 - Small differences A7-2-1

CTR50-CPP. Guarantee that container
indices and iterators are within the
valid range.

3 - Significant differences A5-2-5

327 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

CTR51-CPP. Use valid references,
pointers, and iterators to reference
elements of a container.

3 - Significant differences M5-0-16,
M5-0-17

CTR52-CPP. Guarantee that library
functions do not overflow.

5 - Not yet analyzed

CTR53-CPP. Use valid iterator ranges. 3 - Significant differences M5-0-16,
M5-0-17

CTR54-CPP. Do not subtract iterators
that do not refer to the same container.

3 - Significant differences M5-0-16,
M5-0-17

CTR55-CPP. Do not use an additive
operator on an iterator if the result
would overflow.

3 - Significant differences M5-0-16,
M5-0-17

CTR56-CPP. Do not
use pointer arithmetic on polymorphic
objects.

5 - Not yet analyzed

CTR57-CPP. Provide a valid ordering
predicate.

5 - Not yet analyzed

CTR58-CPP. Predicate function
objects should not be mutable.

5 - Not yet analyzed

ARR30-C. Do not form or use out-of-
bounds pointers or array subscripts.

3 - Significant differences A5-2-5

ARR37-C. Do not add or subtract an
integer to a pointer to a non-array
object.

3 - Significant differences M5-0-15

ARR38-
C. Guarantee that library functions do
not form invalid pointers.

5 - Not yet analyzed

ARR39-C. Do not add or subtract a
scaled integer to a pointer.

3 - Significant differences M5-0-15

STR30-C. Do not attempt to modify
string literals.

4 - Rejected Use of C-style
arrays, apart from
static constexpr
members,
is prohibited. See:
A18-1-1.

STR32-C. Do not pass a non-null-
terminated character sequence to a
library function that expects a string

5 - Not yet analyzed

STR34-C. Cast characters to unsigned
char before converting to larger integer
sizes.

5 - Not yet analyzed

STR37-C. Arguments to
character-handling functions must be
representable as an unsigned char.

5 - Not yet analyzed

STR38-C. Do not confuse narrow and
wide character strings and functions.

5 - Not yet analyzed

STR51-CPP. Do not attempt to create
a std::string from a null pointer.

5 - Not yet analyzed

STR52-CPP. Use valid references,
pointers, and iterators to reference
elements of a basic_string.

5 - Not yet analyzed

328 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

STR53-CPP. Range check element
access.

3 - Significant differences A5-2-5 The specific case
of A5-2-5.

MEM31-C. Free dynamically allocated
memory when no longer needed.

5 - Not yet analyzed

MEM34-C. Only free memory allocated
dynamically.

5 - Not yet analyzed

MEM35-C. Allocate sufficient memory
for an object.

4 - Rejected Use of
malloc, calloc and
realloc functions is
prohibited, see:
A18-5-1.

MEM36-C.
Do not modify the alignment of objects
by calling realloc().

4 - Rejected Use of
malloc, calloc and
realloc functions is
prohibited, see:
A18-5-1.

MEM50-CPP. Do not access freed
memory.

5 - Not yet analyzed

MEM51-CPP. Properly deallocate
dynamically allocated resources.

3 - Significant differences A18-5-3 Use of
memory allocation
and deallocation
operators
limited by A18-5-2,
A18-5-4.

MEM52-CPP.
Detect and handle memory allocation
errors.

3 - Significant differences A15-
0-2, A15-2-
2, A15-3-3,
A15-5-3

MEM53-CPP. Explicitly construct and
destruct objects when manually
managing object lifetime.

4 - Rejected A18-5-2 Explicit
use of operators
new and delete is
prohibited.
Managing
object lifetime also
covered by A18-5-
1, A18-5-3.

MEM54-CPP. Provide placement new
with properly aligned pointers to
sufficient storage capacity.

5 - Not yet analyzed

MEM55-CPP.
Honor replacement dynamic storage
management requirements.

5 - Not yet analyzed

MEM56-CPP. Do not store an already-
owned pointer value in an unrelated
smart pointer.

5 - Not yet analyzed

MEM57-CPP. Avoid using default
operator new for over-aligned types.

5 - Not yet analyzed

329 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

FIO50-CPP. Do not alternately input
and output from a file stream without
an intervening positioning call.

5 - Not yet analyzed

FIO51-CPP. Close files when they are
no longer needed.

5 - Not yet analyzed

FIO30-C. Exclude user input from
format strings.

2 - Small differences A27-0-1

FIO32-C. Do not perform operations on
devices that are only appropriate for
files.

5 - Not yet analyzed

FIO34-C. Distinguish between
characters read from a file and EOF or
WEOF.

5 - Not yet analyzed

FIO37-C. Do not assume that fgets()
or fgetws() returns a nonempty string
when successful.

5 - Not yet analyzed

FIO38-C. Do not copy a FILE object. 5 - Not yet analyzed
FIO39-C. Do not alternately input
and output from a stream without an
intervening flush or positioning call.

5 - Not yet analyzed

FIO40-C. Reset strings on fgets() or
fgetws() failure.

5 - Not yet analyzed

FIO41-C. Do not call getc(), putc(),
getwc(), or putwc() with a stream
argument that has side effects.

5 - Not yet analyzed

FIO42-C. Close files when they are no
longer needed.

5 - Not yet analyzed

FIO44-C. Only use values for fsetpos()
that are returned from fgetpos().

5 - Not yet analyzed

FIO45-C. Avoid TOCTOU race
conditions while accessing files.

5 - Not yet analyzed

FIO46-C. Do not access a closed file. 5 - Not yet analyzed
FIO47-C. Use valid format strings. 5 - Not yet analyzed
ERR30-C. Set errno to zero before
calling a library function known to
set errno, and check errno only after
the function returns a value indicating
failure.

4 - Rejected Use of the errno
is prohibited, see:
M19-3-1.

ERR32-C. Do not rely on indeterminate
values of errno.

4 - Rejected Use of the errno
is prohibited, see:
M19-3-1.

ERR33-C. Detect and handle standard
library errors.

3 - Small differences M0-3-2,
A15-0-3

ERR50-CPP. Do not abruptly terminate
the program.

2 - Small differences A15-5-2,
A15-5-3

ERR51-CPP. Handle all exceptions. 2 - Small differences A15-3-3,
A15-5-3

ERR52-CPP. Do not use setjmp() or
longjmp().

2 - Small differences M17-0-5

330 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

ERR53-CPP. Do not reference base
classes or class data members in a
constructor or destructor function-try-
block handler.

3 - Significant differences M15-3-3 Use of function-try-
blocks is anyway
not recommended.
See: A15-3-5.

ERR54-CPP. Catch handlers should
order their parameter types from most
derived to least derived.

2 - Small differences M15-3-6,
M15-3-7

ERR55-CPP. Honor exception
specifications.

3 - Significant differences A15-4-2 Use of
dynamic exception
specification
is prohibited, see:
A15-
4-1. The noexcept
specifier should be
used instead.

ERR56-CPP. Guarantee exception
safety.

2 - Small differences A15-0-2

ERR57-CPP. Do not leak resources
when handling exceptions.

3 - Significant differences A15-
0-2, A15-1-
2, A15-1-4

ERR58-CPP. Handle all exceptions
thrown before main() begins executing.

2 - Small differences A15-2-1

ERR59-
CPP. Do not throw an exception across
execution boundaries.

2 - Small differences A15-1-5

ERR60-CPP. Exception objects must
be nothrow copy constructible.

3 - Significant differences A15-5-3

ERR61-CPP. Catch exceptions by
lvalue reference.

2 - Small differences A15-3-5

ERR62-
CPP. Detect errors when converting a
string to a number.

5 - Not yet analyzed

OOP50-CPP. Do not invoke
virtual functions from constructors or
destructors.

2 - Small differences M12-1-1

OOP51-CPP. Do not slice derived
objects.

2 - Small differences A12-8-6,
A15-3-5

OOP52-CPP. Do not
delete a polymorphic object without a
virtual destructor.

2 - Small differences A12-4-1,
A12-4-2

OOP53-CPP.
Write constructor member initializers in
the canonical order.

2 - Small differences A8-5-1

OOP54-CPP. Gracefully handle self-
copy assignment.

2 - Small differences A12-8-5

OOP55-CPP. Do not use
pointer-to-member operators to access
nonexistent members.

5 - Not yet analyzed

OOP56-CPP. Honor replacement
handler requirements.

5 - Not yet analyzed

331 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

OOP57-CPP. Prefer special member
functions and overloaded operators to
C Standard Library functions.

5 - Not yet analyzed

OOP58-CPP. Copy operations must
not mutate the source object.

2 - Small differences A12-8-1

CON50-CPP. Do not destroy a mutex
while it is locked.

5 - Not yet analyzed

CON51-CPP. Ensure actively held
locks are released on exceptional
conditions.

5 - Not yet analyzed

CON52-CPP. Prevent data races
when accessing bit-fields from multiple
threads.

5 - Not yet analyzed

CON53-CPP. Avoid deadlock by
locking in a predefined order.

5 - Not yet analyzed

CON54-CPP. Wrap functions that can
spuriously wake up in a loop.

5 - Not yet analyzed

CON55-CPP. Preserve thread safety
and liveness when using condition
variables.

5 - Not yet analyzed

CON56-CPP. Do not speculatively lock
a non-recursive mutex that is already
owned by the calling thread.

5 - Not yet analyzed

CON33-C. Avoid race conditions when
using library functions.

5 - Not yet analyzed

CON37-C. Do not call signal() in a
multithreaded program

4 - Rejected Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

CON40-C. Do not refer to an atomic
variable twice in an expression.

5 - Not yet analyzed

CON41-C. Wrap functions that can fail
spuriously in a loop.

5 - Not yet analyzed

CON43-C. Do not allow data races in
multithreaded code.

5 - Not yet analyzed

MSC33-C. Do not pass invalid data to
the asctime() function.

4 - Rejected Use of time
handling functions
of <ctime>
is prohibited, see:
M18-0-4.

MSC38-C. Do not treat a predefined
identifier as an object if it might only be
implemented as a macro.

4 - Rejected Error indicator
errno, setjmp() and
variadic arguments
shall not be used,
see: M19-3-1,
M17-0-5, A8-4-1.

332 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

MSC39-C. Do not call va_arg() on a
va_list that has an indeterminate value.

4 - Rejected Use of
variadic arguments
is prohibited, see:
A8-4-1.

MSC40-C. Do not violate constraints. 5 - Not yet analyzed
MSC50-CPP. Do not use std::rand() for
generating pseudorandom numbers.

5 - Not yet analyzed

MSC51-CPP. Ensure your random
number generator is properly seeded.

5 - Not yet analyzed

MSC52-CPP. Value-returning functions
must return a value from all exit paths.

2 - Small differences A8-4-2

MSC53-CPP. Do not return from a
function declared [[noreturn]].

5 - Not yet analyzed

MSC54-CPP. A signal handler must be
a plain old function.

4 - Rejected Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

FLP30-C. Do not use floating-point
variables as loop counters.

2 - Small differences A6-5-2

FLP32-C. Prevent or detect domain
and range errors in math functions.

5 - Not yet analyzed

FLP34-C. Ensure that floating-point
conversions are within range of the
new type.

3 - Significant differences M5-0-5, M5-
0-6, M5-0-7

FLP36-C. Preserve precision when
converting integral values to floating-
point type.

3 - Significant differences M5-0-5, M5-
0-6, M5-0-7

FLP37-C. Do not
use object representations to compare
floating-point values.

2 - Small differences M3-9-3

ENV30-C. Do not modify the object
referenced by the return value of
certain functions.

5 - Not yet analyzed

ENV31-C. Do not rely
on an environment pointer following an
operation that may invalidate it.

4 - Rejected In
general, a project
shall not rely on
environment-
specific
implementations.

ENV32-C. All exit handlers must return
normally.

3 - Significant differences A15-5-2,
A15-5-3

ENV33-C. Do not call system(). 5 - Not yet analyzed
ENV34-C. Do
not store pointers returned by certain
functions.

3 - Significant differences A18-0-3,
M19-3-1

333 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

SIG31-C. Do not access shared
objects in signal handlers.

4 - Rejected Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

SIG34-C. Do not call signal() from
within interruptible signal handlers.

4 - Rejected Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

SIG35-C. Do not
return from a computational exception
signal handler.

4 - Rejected Use of signal
handling facilities
of <csignal>
is prohibited, see:
M18-7-1.

PRE30-C. Do
not create a universal character name
through concatenation.

5 - Not yet analyzed

PRE31-
C. Avoid side effects in arguments to
unsafe macros.

3 - Significant differences Defining function-
like macros
is prohibited, see:
A16-0-1.

PRE32-C. Do not use preprocessor
directives in invocations of function-like
macros.

Defining function-
like macros
is prohibited, see:
A16-0-1.

Table A.4: SEI CERT C++

A.5 Traceability to C++ Core Guidelines

The following table demonstrates the traceability to C++ Core Guidelines [10]. This is
not considered as a reproduction, but a mean to compare the two standards.

Note that the copyright of C++ Core Guidelines allows a derivative work anyway.

C++ Core Guidelines Rule: Relation type: Related
rule:

Comment:

P.1: Express ideas directly in code. 4 - Rejected The rule is vague.

P.2: Write in ISO Standard C++. 2 - Small differences A0-4-3
P.3: Express intent. 4 - Rejected The rule is vague.

334 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://github.com/isocpp/CppCoreGuidelines/blob/master/LICENSE
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-direct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-what

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

P.4: Ideally, a program should be
statically type safe.

3 - Significant differences The rule is covered
by: A5-2-1, A5-2-
2, A5-2-4, M5-2-
12, A8-5-2, M9-5-1

P.5: Prefer compile-time checking to
run-time checking.

3 - Significant differences M0-3-1

P.6: What cannot be checked at
compile time should be checkable at
run time.

3 - Significant differences A0-1-2, M0-
3-2

P.7: Catch run-time errors early. 3 - Significant differences A0-
1-2, M0-3-2,
A5-2-5, A15-
0-4, A15-0-5

P.8: Don’t leak any resources. 3 - Significant differences A18-
5-1, A18-5-
2, A15-1-4

P.9: Don’t waste time or space. 3 - Significant differences M0-1-1, A0-
1-1, M0-1-8,
M0-1-9

P.10: Prefer immutable data to mutable
data.

2 - Small differences A7-1-1

P.11: Encapsulate messy constructs,
rather than spreading through the
code.

4 - Rejected The rule is vague.

I.1: Make interfaces explicit. 4 - Rejected The rule is vague.

I.2 Avoid global variables. 2 - Small differences A3-3-2
I.3: Avoid singletons. 2 - Small differences A3-3-2
I.4: Make interfaces precisely and
strongly typed.

5 - Not yet analyzed - -

I.5: State preconditions (if any). 4 - Rejected The rule is vague.

I.6: Prefer Expects() for expressing
preconditions.

4 - Rejected Expects() is not
part of Language
Standard.

I.7: State postconditions. 4 - Rejected The rule is vague.

I.8: Prefer Ensures() for expressing
postconditions.

4 - Rejected Ensures() is not
part of Language
Standard.

I.9:
If an interface is a template, document
its parameters using concepts.

3 - Significant differences A14-1-1

I.10: Use exceptions to signal a failure
to perform a required task.

2 - Small differences A15-0-1

I.11: Never transfer ownership by a raw
pointer (T*).

5 - Not yet analyzed - -

I.12: Declare a pointer that must not be
null as not_null.

4 - Rejected The not_null is not
part of Language
Standard.

335 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-compile-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-run-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-early
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-leak
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-waste
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-pre
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-expects
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-post
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-ensures
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nullptr

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

I.13: Do not pass an array as a single
pointer.

2 - Small differences M5-2-12

I.22: Avoid complex initialization of
global objects.

3 - Significant differences A3-3-2

I.23: Keep the number of function
arguments low.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not define
code metrics, see:
A1-4-1.

I.24: Avoid adjacent unrelated
parameters of the same type.

5 - Not yet analyzed - -

I.25: Prefer abstract classes as
interfaces to class hierarchies.

3 - Significant differences A10-1-1 Multiple
inheritance limited
to only one base
class, but multiple
interface classes
can be inherited.

I.26: If you want a cross-compiler ABI,
use a C-style subset.

5 - Not yet analyzed - -

F.1: “Package” meaningful operations
as carefully named functions.

5 - Not yet analyzed - -

F.2: A function should perform a single
logical operation.

5 - Not yet analyzed - -

F.3: Keep functions short and simple. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not define
code metrics, see:
A1-4-1.

F.4: If a function may have to be
evaluated at compile time, declare it
constexpr.

2 - Small differences A7-1-2

F.5: If a function is very small and time-
critical, declare it inline.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not define
code metrics, see:
A1-4-1.

F.6: If your function may not throw,
declare it noexcept.

2 - Small differences A15-4-4

F.7: For general use, take T* or T&
arguments rather than smart pointers.

5 - Not yet analyzed - -

F.8: Prefer pure functions. 5 - Not yet analyzed - -

F.15: Prefer simple and conventional
ways of passing information.

5 - Not yet analyzed - -

F.16: For “in” parameters, pass
cheaply-copied types by value and
others by reference to const.

5 - Not yet analyzed - -

F.17: For “in-out” parameters, pass by
reference to non-const.

5 - Not yet analyzed - -

336 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-inout

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

F.18: For “consume” parameters, pass
by X&& and std::move the parameter.

5 - Not yet analyzed - -

F.19: For “forward” parameters, pass
by TP&& and only std::forward the
parameter.

5 - Not yet analyzed - -

F.20: For “out” output values, prefer
return values to output parameters.

5 - Not yet analyzed - -

F.21: To return multiple “out” values,
prefer returning a tuple or struct.

5 - Not yet analyzed - -

F.22: Use T* or owner<T*> to
designate a single object.

3 - Significant differences M5-2-12 The owner<T*> is
not
part of Language
Standard.

F.23: Use a not_null<T> to indicate that
“null” is not a valid value.

4 - Rejected The not_null<T> is
not
part of Language
Standard.

F.24: Use a span<T> or a span_p<T>
to designate a half-open sequence.

4 - Rejected Neither
the span<T> nor
the span_p<T> are
part of Language
Standard.

F.25:
Use a zstring or a not_null<zstring> to
designate a C-style string.

4 - Rejected Neither
the zstring nor the
not_null<zstring>
are
part of Language
Standard.

F.26: Use a unique_ptr<T> to transfer
ownership where a pointer is needed.

4 - R - -

F.27: Use a shared_ptr<T> to share
ownership.

5 - Not yet analyzed - -

F.60: Prefer T* over T& when no
argument is a valid option.

5 - Not yet analyzed - -

F.42: Return a T* to indicate a position
(only).

5 - Not yet analyzed - -

F.43: Never (directly or indirectly)
return a pointer or a reference to a local
object.

2 - Small differences M7-5-2

F.44: Return a T& when copy is
undesirable and returning no object
isn’t needed.

5 - Not yet analyzed - -

F.45: Don’t return a T&&. 5 - Not yet analyzed - -

F.46: int is the return type for main(). 5 - Not yet analyzed - -

F.47: Return T& from assignment
operators.

5 - Not yet analyzed - -

337 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-forward
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-string
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-ptr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-main
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

F.50: Use a lambda when a function
won’t do (to capture local variables, or
to write a local function).

5 - Not yet analyzed - -

F.51: Where there is a choice, prefer
default arguments over overloading.

5 - Not yet analyzed - -

F.52: Prefer capturing by reference
in lambdas that will be used locally,
including passed to algorithms.

2 - Small differences A5-1-5

F.53: Avoid capturing by reference in
lambdas that will be used nonlocally,
including returned, stored on the heap,
or passed to another thread.

2 - Small differences A5-1-4

F.54: If you capture this, capture all
variables explicitly (no default capture).

3 - Significant differences A5-1-2 AUTOSAR C++
Coding Guidelines
prohibits implicit
variables capturing
into a lambda
expression.

C.1: Organize related data into
structures (structs or classes).

5 - Not yet analyzed - -

C.2: Use class if the class has
an invariant; use struct if the data
members can vary independently.

3 - Significant differences Class shall be used
for all non-POD
types (see: A11-
0-1), and a struct
for types defined in
A11-0-2.

C.3: Represent the distinction between
an interface and an implementation
using a class.

5 - Not yet analyzed - -

C.4: Make a function a member
only if it needs direct access to the
representation of a class.

2 - Small differences M9-3-3

C.5: Place helper functions in the same
namespace as the class they support.

5 - Not yet analyzed - -

C.7: Don’t define a class or enum and
declare a variable of its type in the
same statement.

5 - Not yet analyzed - -

C.8: Use class rather than struct if any
member is non-public.

2 - Small differences M11-0-1,
A11-0-1

C.9: Minimize exposure of members. 3 - Significant differences M9-3-1, A9-
3-1, M11-0-1

C.10 Prefer concrete types over class
hierarchies.

5 - Not yet analyzed - -

C.11: Make concrete types regular. 5 - Not yet analyzed - -

C.20: If you can avoid defining default
operations, do.

2 - Small differences A12-0-1 Following “the rule
of
zero” is permitted if
no special member
functions need to
be defined.

338 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-capture-vs-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-reference-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-value-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-this-capture
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-org
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-helper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-helper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-private
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-concrete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-concrete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.21: If you define or =delete any
default operation, define or =delete
them all.

2 - Small differences A12-0-1

C.22: Make default operations
consistent.

2 - Small differences A12-1-1,
A12-8-1

C.30: Define a destructor if a class
needs an explicit action at object
destruction.

5 - Not yet analyzed - -

C.31: All resources acquired by a
class must be released by the class’s
destructor.

5 - Not yet analyzed - -

C.32: If a class has a raw pointer (T*)
or reference (T&), consider whether it
might be owning.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.33: If a class has an owning pointer
member, define a destructor.

4 - Rejected The rule is vague.

C.34: If a class has an owning
reference member, define a destructor.

4 - Rejected The rule is vague.

C.35: A base class destructor
should be either public and virtual, or
protected and nonvirtual.

2 - Small differences A12-4-1

C.36: A destructor may not fail. 2 - Small differences A15-5-1
C.37: Make destructors noexcept. 2 - Small differences A15-5-1
C.40: Define a constructor if a class
has an invariant.

5 - Not yet analyzed - -

C.41: A constructor should create a
fully initialized object.

2 - Small differences A15-2-2

C.42: If a constructor cannot construct
a valid object, throw an exception.

2 - Small differences A15-2-2

C.43: Ensure that a class has a default
constructor.

5 - Not yet analyzed - -

C.44: Prefer default constructors to be
simple and non-throwing.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.45:
Don’t define a default constructor that
only initializes data members; use in-
class member initializers instead.

2 - Small differences A12-1-3,
A12-7-1

C.46: By default, declare single-
argument constructors explicit.

2 - Small differences A12-1-4

C.47: Define and initialize member
variables in the order of member
declaration.

2 - Small differences A8-5-1

339 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-five
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-matched
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-matched
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ptr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-complete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-complete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default0
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default0
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default00
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default00
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.48: Prefer in-class initializers to
member initializers in constructors for
constant initializers.

3 - Significant differences A12-1-3 AUTOSAR C++
Coding Guidelines
states that NSDMI
shall not be mixed
with
member initializer
list of constructors,
see: A12-1-2.

C.49: Prefer initialization to
assignment in constructors.

2 - Small differences A12-6-1

C.50: Use a factory function if
you need “virtual behavior” during
initialization.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.51: Use delegating constructors
to represent common actions for all
constructors of a class.

5 - Not yet analyzed - -

C.52: Use inheriting constructors to
import constructors into a derived class
that does not need further explicit
initialization.

5 - Not yet analyzed - -

C.60: Make copy assignment non-
virtual, take the parameter by const&,
and return by non-const&.

2 - Small differences A10-3-5,
A13-2-1

C.61: A copy operation should copy. 2 - Small differences A12-8-1,
A12-8-2

C.62: Make copy assignment safe for
self-assignment.

2 - Small differences A12-8-5

C.63: Make move assignment non-
virtual, take the parameter by &&, and
return by non-const&.

2 - Small differences A10-3-5,
A13-2-1

C.64: A move operation should move
and leave its source in a valid state.

2 - Small differences A12-8-1,
A12-8-4

C.65: Make move assignment safe for
self-assignment.

2 - Small differences A12-8-5

C.66: Make move operations
noexcept.

2 - Small differences A15-5-1

C.67: A base class should suppress
copying, and provide a virtual clone
instead if copying” is desired.

2 - Small differences A12-8-6

C.80: Use =default if you have to
be explicit about using the default
semantics.

2 - Small differences A12-7-1

C.81: Use =delete when you want
to disable default behavior (without
wanting an alternative).

5 - Not yet analyzed - -

C.82: Don’t call virtual functions in
constructors and destructors.

2 - Small differences M12-1-1

340 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-in-class-initializer
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-initialize
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-factory
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delegating
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-inheriting
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-assignment
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-semantic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-self
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-move-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-copy-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eqdefault
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-delete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-ctor-virtual

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.83: For value-like types, consider
providing a noexcept swap function.

3 - Significant differences A12-8-2 The swap
function is explicitly
recommended
for copy and move
assignment
operators only.

C.84: A swap function may not fail. 2 - Small differences A15-5-1
C.85: Make swap noexcept. 2 - Small differences A15-5-1
C.86: Make
== symmetric with respect to operand
types and noexcept.

5 - Not yet analyzed - -

C.87: Beware of == on base classes. 5 - Not yet analyzed - -

C.89: Make a hash noexcept. 5 - Not yet analyzed - -

C.120: Use class
hierarchies to represent concepts with
inherent hierarchical structure (only).

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.121: If a base class is used as an
interface, make it a pure abstract class.

2 - Small differences AUTOSAR C++
Coding
Guidelines defines
an interface class
definition,
see: Interface-
Class.

C.122: Use abstract classes as
interfaces when complete separation
of interface and implementation is
needed.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.126: An abstract class typically
doesn’t need a constructor.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.127: A class with a virtual function
should have a virtual or protected
destructor.

2 - Small differences A12-4-1

C.128: Virtual functions should specify
exactly one of virtual, override, or final.

2 - Small differences A10-3-1

C.129: When
designing a class hierarchy, distinguish
between implementation inheritance
and interface inheritance.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

341 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-swap-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-eq-base
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-hash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-domain
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-separation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-abstract-ctor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dtor
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-kind

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.130: Redefine or prohibit copying
for a base class; prefer a virtual clone
function instead.

2 - Small differences A12-8-6

C.131: Avoid trivial getters and setters. 4 - Rejected All members
in non-POD types
shall be private.

C.132: Don’t make a function virtual
without reason.

4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.133: Avoid protected data. 3 - Significant differences M11-0-1 All members
in non-POD types
shall be private.

C.134: Ensure all non-const data
members have the same access level.

2 - Small differences M11-0-1,
A11-0-2

C.135: Use multiple inheritance to
represent multiple distinct interfaces.

2 - Small differences A10-1-1

C.136: Use multiple inheritance to
represent the union of implementation
attributes.

4 - Rejected Multiple
implementation
inheritance is
prohibited
by AUTOSAR C++
Coding Guidelines,
it allows only
multiple interface
inheritance.

C.137: Use virtual bases to avoid
overly general base classes.

4 - Rejected It is allowed to use
virtual inheritance
only in a diamond
hierarchy, see:
M10-1-1, M10-1-2.

C.138: Create an overload set for a
derived class and its bases with using.

5 - Not yet analyzed - -

C.139: Use final sparingly. 4 - Rejected Non-generic
design
principle; There is
no need for a new
rule.

C.140: Do not provide different default
arguments for a virtual function and an
overrider.

2 - Small differences M8-3-1

C.145: Access polymorphic objects
through pointers and references.

5 - Not yet analyzed - -

C.146: Use dynamic_cast where class
hierarchy navigation is unavoidable.

2 - Small differences A5-2-1

342 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-copy
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-get
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-protected
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-public
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-public
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-mi-implementation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-vbase
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-vbase
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-final
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#a-namerh-virtual-default-argac140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-poly
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-dynamic_cast

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.147: Use dynamic_cast to a
reference type when failure to find the
required class is considered an error.

4 - Rejected The dynamic_cast
should not be used,
see: A5-2-1.

C.148: Use dynamic_cast to a pointer
type when failure to find the required
class is considered a valid alternative.

4 - Rejected The dynamic_cast
should not be used,
see: A5-2-1.

C.149: Use unique_ptr or shared_ptr
to avoid forgetting to delete objects
created using new.

2 - Small differences A18-5-2

C.150: Use
make_unique() to construct objects
owned by unique_ptrs.

2 - Small differences A18-5-2

C.151: Use
make_shared() to construct objects
owned by shared_ptrs.

2 - Small differences A18-5-2

C.152: Never assign a pointer to an
array of derived class objects to a
pointer to its base.

5 - Not yet analyzed - -

C.160: Define operators primarily to
mimic conventional usage.

5 - Not yet analyzed - -

C.161: Use nonmember functions for
symmetric operators.

5 - Not yet analyzed - -

C.162: Overload operations that are
roughly equivalent.

5 - Not yet analyzed - -

C.163: Overload only for operations
that are roughly equivalent.

5 - Not yet analyzed - -

C.164: Avoid conversion operators. 5 - Not yet analyzed - -

C.165: Use using for customization
points.

5 - Not yet analyzed - -

C.166: Overload unary & only as part
of a system of smart pointers and
references.

3 - Significant differences M5-3-3 The unary
& operator shall not
be overloaded.

C.168: Define overloaded operators in
the namespace of their operands.

5 - Not yet analyzed - -

C.167:
Use an operator for an operation with
its conventional meaning.

4 - Rejected Design
principle; There is
no need for a new
rule.

C.170: If you feel like overloading a
lambda, use a generic lambda.

4 - Rejected Design
principle; There is
no need for a
new rule. Creating
generic lambda
expressions is
allowed, see: A7-1-
5.

343 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ptr-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-ref-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conventional
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-symmetric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-symmetric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-equivalent-2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-conversion
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-custom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-custom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-address-of
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-namespace
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-namespace
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-overload
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ro-lambda

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

C.180: Use unions to save memory. 4 - Rejected Unions shall not be
used, see: M9-5-1.

C.181: Avoid “naked” unions. 2 - Small differences M9-5-1
C.182: Use anonymous unions to
implement tagged unions.

5 - Not yet analyzed - -

C.183: Don’t use a union for type
punning.

4 - Rejected Unions shall not be
used, see: M9-5-1.

Enum.1: Prefer enumerations over
macros.

3 - Significant differences A16-0-1 Usage of macros is
prohibited.

Enum.2:
Use enumerations to represent sets of
related named constants.

4 - Rejected Design
principle; There is
no need for a new
rule.

Enum.3: Prefer class enums over
“plain” enums.

2 - Small differences A7-2-3

Enum.4: Define operations on
enumerations for safe and simple use.

4 - Rejected Design
principle; There is
no need for a new
rule.

Enum.5: Don’t use ALL_CAPS for
enumerators.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

Enum.6: Avoid unnamed
enumerations.

3 - Significant differences A7-2-3 Enum classes shall
be used instead of
enums; it is not
allowed to declare
unnamed enum
class.

Enum.7: Specify the underlying type of
an enumeration only when necessary.

4 - Rejected AUTOSAR C++
Coding Guidelines
forces
a programmer to
specify the
underlying
base type explicitly,
as only fixed-width
numeric types shall
be used. See: A3-
9-1.

344 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-union
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-naked
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-anonymous
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ru-pun
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-oper
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Enum.8: Specify enumerator values
only when necessary.

3 - Significant differences A7-2-4 It is defined how
enumerators
values should be
specified.

R.1: Manage resources automatically
using resource handles and RAII
(Resource Acquisition Is Initialization).

4 - Rejected Design
principle; There is
no need for a new
rule.

R.2: In interfaces, use raw pointers to
denote individual objects (only).

4 - Rejected Design
principle; There is
no need for a new
rule.

R.3: A raw pointer (a T*) is non-
owning.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.4: A raw reference (a T&) is non-
owning.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.5: Don’t heap-allocate
unnecessarily.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.6: Avoid non-const global variables. 3 - Significant differences A3-3-2 There shall be no
non-
POD type objects
with static storage
duration besides
static constexpr
variables.

R.10: Avoid malloc() and free(). 2 - Small differences A18-5-1
R.11: Avoid calling new and delete
explicitly.

2 - Small differences A18-5-2

R.12: Immediately give the result of
an explicit resource allocation to a
manager object.

2 - Small differences A18-5-2

R.13: Perform at most one
explicit resource allocation in a single
expression statement.

5 - Not yet analyzed - -

R.14: ??? array vs. pointer parameter. 2 - Small differences M5-2-12
R.15: Always overload matched
allocation/deallocation pairs.

5 - Not yet analyzed - -

345 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-global
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-mallocfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ap
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-pair

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

R.20: Use unique_ptr or shared_ptr to
represent ownership.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.21: Prefer
unique_ptr over shared_ptr unless you
need to share ownership.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.22: Use make_shared() to make
shared_ptrs.

5 - Not yet analyzed - -

R.23: Use make_unique() to make
unique_ptrs.

5 - Not yet analyzed - -

R.24: Use std::weak_ptr to break
cycles of shared_ptrs.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.30: Take
smart pointers as parameters only to
explicitly express lifetime semantics.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.31: If you have non-std smart
pointers, follow the basic pattern from
std.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.32: Take a unique_ptr<widget>
parameter to express that a function
assumes ownership of a widget.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.33: Take a unique_ptr<widget>&
parameter to express that a function
reseats thewidget.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.34: Take a shared_ptr<widget>
parameter to express that a function is
part owner.

4 - Rejected Design
principle; There is
no need for a new
rule.

R.35: Take a shared_ptr<widget>&
parameter to express that a function
might reseat the shared pointer.

4 - Rejected Design
principle; There is
no need for a new
rule.-

R.36: Take a
const shared_ptr<widget>& parameter
to express that it might retain a
reference count to the object ???.

4 - Rejected Design
principle; There is
no need for a new
rule.

346 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-make_unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-weak_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-weak_ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smart
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-uniqueptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-reseat
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-owner
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-sharedptrparam-const

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

R.37: Do not pass a pointer or
reference obtained from an aliased
smart pointer.

4 - Rejected Design
principle; There is
no need for a new
rule.

ES.1: Prefer the standard library to
other libraries and to “handcrafted
code”.

4 - Rejected Design
principle; There is
no need for a new
rule.

ES.2: Prefer suitable abstractions to
direct use of language features.

4 - Rejected Design
principle; There is
no need for a new
rule.

ES.5: Keep scopes small. 2 - Small differences M3-4-1
ES.6: Declare names in for-statement
initializers and conditions to limit
scope.

2 - Small differences M3-4-1 As an exeception
from the A7-
1-7, it is allowed to
declare variables in
for-statement
initializer.

ES.7: Keep common and local names
short, and keep uncommon and
nonlocal names longer.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

ES.8: Avoid similar-looking names. 2 - Small differences M2-10-1
ES.9: Avoid ALL_CAPS names. 4 - Rejected AUTOSAR C++

Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

ES.10: Declare one name (only) per
declaration.

2 - Small differences A7-1-7

ES.11: Use auto to avoid redundant
repetition of type names.

3 - Significant differences A7-1-5 It is
not recommended
to use the auto
specifier, but it is
allowed.

ES.12: Do not reuse names in nested
scopes.

2 - Small differences A2-11-1

ES.20: Always initialize an object. 2 - Small differences M8-5-1
ES.21: Don’t introduce a variable (or
constant) before you need to use it.

2 - Small differences M3-4-1

347 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-smartptrget
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-abstr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-abstr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-scope
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-cond
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-similar
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-not-CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-one
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-name-one
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-reuse
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-reuse
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-introduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-introduce

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

ES.22: Don’t declare a variable until
you have a value to initialize it with.

2 - Small differences M3-4-1, M8-
5-1

ES.23: Prefer the {} initializer syntax. 2 - Small differences A8-5-2
ES.24: Use a unique_ptr<T> to hold
pointers.

3 - Significant differences A18-
5-2, A15-1-
4, A18-1-3

AUTOSAR C++
Coding Guidelines
does not force a
programmer to use
std::unique_ptr, it is
just highly
recommended
within examples
and rationales.

ES.25: Declare an object const or
constexpr unless you want to modify its
value later on.

2 - Small differences A7-1-1

ES.26: Don’t use a variable for two
unrelated purposes.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

ES.27: Use std::array or stack_array
for arrays on the stack.

3 - Significant differences A18-1-1 C-style arrays shall
not be used, and
it is recommended
to use std::array
instead.

ES.28: Use lambdas
for complex initialization, especially of
const variables.

5 - Not yet analyzed - -

ES.30: Don’t use macros for program
text manipulation.

2 - Small differences A16-0-1 Usage of macros is
prohibited.

ES.31: Don’t use macros for constants
or “functions”.

2 - Small differences A16-0-1 Usage of macros is
prohibited.

ES.32: Use ALL_CAPS for all macro
names.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

ES.33: If you must use macros, give
them unique names.

2 - Small differences M2-10-1

ES.34: Don’t define a (C-style)
variadic function.

2 - Small differences A8-4-1

348 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-list
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unique
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-recycle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-recycle
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-stack
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-macros2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ALL_CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ALL_CAPS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-MACROS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-MACROS
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ellipses
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ellipses

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

ES.70: Prefer a switch-statement to an
if-statement when there is a choice.

4 - Rejected Design principle;
The switch
statement
shall have at least
two case-clauses,
distinct from the
default label. See:
A6-4-1.

ES.71: Prefer a range-for-statement to
a for-statement when there is a choice.

3 - Significant differences A6-5-1 It is recommended
to use range-based
for statement to
replace equivalent
for-statements.

ES.72: Prefer a for-statement to
a while-statement when there is an
obvious loop variable.

5 - Not yet analyzed - -

ES.73: Prefer a while-statement to a
for-statement when there is no obvious
loop variable.

3 - Significant differences A6-5-2 It is required that a
for-loop contains a
loop-counter.

ES.74: Prefer to declare a loop
variable in the initializer part of a for-
statement.

3 - Significant differences M3-4-1 It is required that
each identifier is
defined in a block
that minimizes its
visibility.

ES.75: Avoid do-statements. 5 - Not yet analyzed - -

ES.76: Avoid goto. 2 - Small differences A6-6-1
ES.78: Always end a non-empty case
with a break.

2 - Small differences M6-4-5

ES.85: Make empty statements visible. 2 - Small differences M6-3-1, M6-
4-1, M6-4-1

ES.86: Avoid modifying loop control
variables inside the body of raw for-
loops.

2 - Small differences M6-5-3

ES.40: Avoid complicated expressions. 4 - Rejected
ES.41: If in doubt about operator
precedence, parenthesize.

5 - Not yet analyzed - -

ES.42: Keep use of pointers simple
and straightforward.

4 - Rejected

ES.43: Avoid expressions with
undefined order of evaluation.

2 - Small differences A5-0-1

ES.44: Don’t depend on order of
evaluation of function arguments.

2 - Small differences A5-0-1

ES.45: Avoid "magic constants"; use
symbolic constants.

2 - Small differences A5-1-1

ES.46: Avoid lossy (narrowing,
truncating) arithmetic conversions.

2 - Small differences A4-7-1, M5-
0-6

ES.47: Use nullptr rather than 0 or
NULL.

2 - Small differences A4-10-1

349 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-switch-if
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-switch-if
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-range
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-while
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-while-for
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-for-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-do
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-goto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-break
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-break
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-empty
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-loop-counter
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-complicated
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-parens
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-parens
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-order-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-magic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-magic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-nullptr

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

ES.48: Avoid casts. 2 - Small differences A5-2-1, A5-
2-2, A5-2-3,
A5-2-4

ES.49: If you must use a cast, use a
named cast.

2 - Small differences A5-2-2

ES.50: Don’t cast away const. 2 - Small differences A5-2-3
ES.55: Avoid the need for range
checking.

5 - Not yet analyzed - -

ES.56: Write std::move() only when
you need to explicitly move an object
to another scope.

3 - Significant differences A12-
8-3, A18-9-
2, A18-9-3

Vulnerabilities
of std::move() are
explained.

ES.60: Avoid new and delete outside
resource management functions.

2 - Small differences A18-5-2

ES.61: Delete arrays using delete[]
and non-arrays using delete.

2 - Small differences A18-5-3

ES.62: Don’t compare pointers into
different arrays.

2 - Small differences M5-0-16

ES.63: Don’t slice. 3 - Significant differences A12-8-6,
A15-3-5

The functionalities
that could
lead to slicing were
prohibited.

ES.100: Don’t mix signed and
unsigned arithmetic.

5 - Not yet analyzed - -

ES.101: Use unsigned types for bit
manipulation.

2 - Small differences M5-0-21

ES.102: Use signed types for
arithmetic.

5 - Not yet analyzed - -

ES.103: Don’t overflow. 2 - Small differences A4-7-1
ES.104: Don’t underflow. 2 - Small differences A4-7-1
ES.105: Don’t divide by zero. 2 - Small differences A5-5-1
Per.1: Don’t optimize without reason. 4 - Rejected Implementation

principle; There is
no need for a new
rule.

Per.2: Don’t optimize prematurely. 4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.3: Don’t optimize something that’s
not performance critical.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.4: Don’t assume that complicated
code is necessarily faster than simple
code.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

350 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-range-checking
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-move
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-new
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-new
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-del
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-arr2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-slice
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-mix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unsigned
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-unsigned
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-signed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-overflow
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-underflow
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-zero
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-Knuth
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-critical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-critical
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-simple

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Per.5: Don’t assume that low-level
code is necessarily faster than high-
level code.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.6: Don’t make claims about
performance without measurements.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.7: Design to enable optimization. 4 - Rejected Design
principle; There is
no need for a new
rule.

Per.10: Rely on the static type system. 4 - Rejected Implementation
principle; There is
no need for a new
rule.

Per.19: Access memory predictably. 5 - Not yet analyzed - -

CP.1: Assume that your code will run
as part of a multi-threaded program.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.2: Avoid data races. 5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.3: Minimize explicit sharing of
writable data.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.4: Think in terms of tasks, rather
than threads.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

351 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-measure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-efficiency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-access
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-multi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-races
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

CP.8: Don’t try to use volatile for
synchronization.

55 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.20: Use RAII, never plain
lock()/unlock().

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.21: Use std::lock() to acquire
multiple mutexes.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.22: Never call unknown code while
holding a lock (e.g., a callback).

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.23: Think of a joining thread as a
scoped container.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.24: Think of a detached thread as a
global container.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.25: Prefer gsl::raii_thread over
std::thread unless you plan to detach().

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

352 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii_thread

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

CP.26: Prefer gsl::detached_thread
over std::thread if you plan to detach().

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.27: Use plain std::thread for
threads that detach based on a run-
time condition (only).

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.28: Remember to join scoped
threads that are not detach()ed.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.30: Do not pass pointers to local
variables to non-raii_threads.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.31: Pass small amounts of data
between threads by value, rather than
by reference or pointer.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

[CP.32: To share ownership between
unrelated threads use shared_ptr.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.40: Minimize context switching. 5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

353 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-thread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join-undetached
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RRconc-pass
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RRconc-pass
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data-by-value
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-shared
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-switch

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

CP.41: Minimize thread creation and
destruction.

55 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.42: Don’t wait without a condition. 5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.43: Minimize time spent in a critical
section.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.44: Remember to name your
lock_guards and unique_locks.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

P.50: Define a mutex together with the
data it guards.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.60: Use a future to return a value
from a concurrent task.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.61: Use a async() to spawn a
concurrent task.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

354 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-create
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-create
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-wait
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-time
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-future
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-future
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-async

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

CP.100: Don’t
use lock-free programming unless you
absolutely have to.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.101: Distrust your
hardware/compiler combination.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.102: Carefully study the literature. 5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.110: Do not write your own double-
checked locking for initialization.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.111: Use a conventional pattern
if you really need double-checked
locking.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

CP.200: Use volatile only to talk to non-
C++ memory.

5 - Not yet analyzed The “Concurrency
and Parallelism”
chapter is not yet
covered, this will
be addressed in
future.

E.1: Develop an error-handling
strategy early in a design.

4 - Rejected Design
principle; There is
no need for a new
rule.

E.2: Throw an exception to signal that
a function can’t perform its assigned
task.

2 - Small differences A15-0-1

E.3: Use exceptions for error handling
only.

2 - Small differences A15-0-1

355 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lockfree
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-distrust
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-literature
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double-pattern
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-volatile2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-errors
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-errors

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

E.4: Design your error-handling
strategy around invariants.

4 - Rejected Design
principle; There is
no need for a new
rule.

E.5: Let a constructor establish an
invariant, and throw if it cannot.

2 - Small differences A15-2-2

E.6: Use RAII to prevent leaks. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.7: State your preconditions. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.8: State your postconditions. 4 - Rejected Design
principle; There is
no need for a new
rule.

E.12: Use noexcept when exiting
a function because of a throw is
impossible or unacceptable.

2 - Small differences A15-4-4

E.13: Never throw while being the
direct owner of an object.

3 - Significant differences A15-1-4 It is required to
release all
acquired resources
and objects before
a throw or a return
statement.

E.14: Use purpose-designed user-
defined types as exceptions (not built-
in types).

3 - Significant differences A15-1-1 It is
required that user-
defined exceptions
inherit
from std::exception
class.

E.15:
Catch exceptions from a hierarchy by
reference.

2 - Small differences A15-3-5

E.16: Destructors, deallocation, and
swap must never fail.

2 - Small differences A15-5-1

356 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-design-invariants
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-precondition
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-postcondition
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-noexcept
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-types
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-exception-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-never-fail

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

E.17: Don’t try to catch every
exception in every function.

2 - Small differences A15-3-1,
A15-3-2

AUTOSAR C++
Coding Guidelines
introduces checked
and unchecked
exceptions.
Whether they
should
be propagated or
caught, It depends
on the type of an
exception.

E.18: Minimize the use of explicit
try/catch.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

E.19: Use a final_action object to
express cleanup if no suitable resource
handle is available.

4 - Rejected The
finally is not part of
the C++ Language
Standard.

E.25: If you can’t throw
exceptions, simulate RAII for resource
management.

3 - Rejected the RAII is a coding
pattern; There is no
need for
a new rule. On the
other hand, usage
of RAII
is recommended in
the example of the
A15-1-4.

E.26: If you can’t throw exceptions,
consider failing fast.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

E.27: If you can’t throw exceptions, use
error codes systematically.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not force any
specific error
handling
mechanism. It
requires that every
error information
will be tested, see:
M0-3-2.

E.28: Avoid error handling based on
global state (e.g. errno).

2 - Small differences M19-3-1

Con.1: By default, make objects
immutable.

5 - Not yet analyzed - -

Con.2: By default, make member
functions const.

2 - Small differences M9-3-3

357 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-not-always
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-catch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-raii
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-crash
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw-codes
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Con.3: By default, pass pointers and
references to consts.

5 - Not yet analyzed - -

Con.4: Use const to define objects
with values that do not change after
construction.

5 - Not yet analyzed - -

Con.5: Use constexpr for values that
can be computed at compile time.

2 - Small differences A7-1-2

T.1: Use templates to raise the level of
abstraction of code.

4 - Rejected Design
principle; There is
no need for a new
rule.

T.2: Use templates to
express algorithms that apply to many
argument types.

4 - Rejected Design
principle; There is
no need for a new
rule.

T.3: Use templates to express
containers and ranges.

4 - Rejected Design
principle; There is
no need for a new
rule.

T.4: Use templates to express syntax
tree manipulation.

4 - Rejected Design
principle; There is
no need for a new
rule.

T.5: Combine
generic and OO techniques to amplify
their strengths, not their costs.

4 - Rejected Design
principle; There is
no need for a new
rule.

T.10: Specify concepts for all template
arguments.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.11: Whenever possible use standard
concepts.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.12: Prefer concept names over auto
for local variables.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.13: Prefer the shorthand notation for
simple, single-type argument
concepts.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

358 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-algo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cont
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-expr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-expr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-generic-oo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-concepts
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-auto
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-shorthand

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

T.20: Avoid “concepts” without
meaningful semantics.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.21: Require a complete set of
operations for a concept.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.22: Specify axioms for concepts. 4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.23: Differentiate a refined concept
from its more general case by adding
new use patterns..

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.24: Use tag classes or traits to
differentiate concepts that differ only in
semantics..

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.25: Avoid complementary
constraints.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.26: Prefer to define concepts in
terms of use-patterns rather than
simple syntax.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.40: Use function objects to pass
operations to algorithms.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

T.41: Require only essential properties
in a template’s concepts.

4 - Rejected Concepts are not
part of the C++14
Language
Standard.

T.42: Use template aliases to simplify
notation and hide implementation
details.

5 - Not yet analyzed - -

T.43: Prefer using over typedef for
defining aliases.

2 - Small differences A7-1-6

T.44: Use function templates to deduce
class template argument types (where
feasible).

5 - Not yet analyzed - -

359 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-low
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RT-operations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#RT-operations
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-axiom
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-refine
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-use
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fo
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-essential
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-essential
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-alias
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-using
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-deduce

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

T.46: Require template arguments to
be at least Regular or SemiRegular.

5 - Not yet analyzed - -

T.47: Avoid
highly visible unconstrained templates
with common names.

5 - Not yet analyzed - -

T.48: If your compiler does not support
concepts, fake them with enable_if.

4 - Rejected Implementation
principle; There is
no need for a new
rule.

T.49: Where possible, avoid type-
erasure.

5 - Not yet analyzed - -

T.60: Minimize a template’s context
dependencies.

5 - Not yet analyzed - -

T.61: Do not over-parameterize
members (SCARY).

2 - Small differences A14-1-1,
A14-7-1

T.62: Place non-dependent class
template members in a non-templated
base class.

5 - Not yet analyzed - -

T.65:
Use tag dispatch to provide alternative
implementations of a function.

5 - Not yet analyzed - -

T.68: Use rather than () within
templates to avoid ambiguities.

2 - Small differences A8-5-2

T.69: Inside a template, don’t make
an unqualified nonmember function
call unless you intend it to be a
customization point.

5 - Not yet analyzed - -

T.80: Do not naively templatize a class
hierarchy.

5 - Not yet analyzed - -

T.81: Do not mix hierarchies and
arrays.

5 - Not yet analyzed - -

T.83: Do not declare a member
function template virtual.

5 - Not yet analyzed - -

T.84: Use
a non-template core implementation to
provide an ABI-stable interface.

5 - Not yet analyzed - -

T.100: Use variadic templates when
you need a function that takes a
variable number of arguments of a
variety of types.

2 - Small differences A8-4-1

T.103: Don’t use variadic templates for
homogeneous argument lists.

5 - Not yet analyzed - -

T.120: Use
template metaprogramming only when
you really need to.

5 - Not yet analyzed - -

T.121: Use template
metaprogramming primarily to emulate
concepts.

5 - Not yet analyzed - -

T.122: Use templates (usually template
aliases) to compute types at compile
time.

5 - Not yet analyzed - -

T.123: Use constexpr functions to
compute values at compile time.

5 - Not yet analyzed - -

360 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-visible
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concept-def
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concept-def
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-erasure
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-depend
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-depend
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-scary
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-scary
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nondependent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tag-dispatch
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-cast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-customization
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-hier
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-hier
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-array
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-virtual
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-abi
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-variadic-not
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-emulate
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-fct

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

T.124: Prefer to use standard-library
TMP facilities.

5 - Not yet analyzed - -

T.125: If you need to go beyond the
standard-library TMP facilities, use an
existing library.

5 - Not yet analyzed - -

T.140: Name all operations with
potential for reuse.

4 - Rejected

T.141: Use an unnamed lambda if you
need a simple function object in one
place only.

5 - Not yet analyzed - -

T.142?: Use template variables to
simplify notation.

5 - Not yet analyzed - -

T.143: Don’t write unintentionally
nongeneric code.

5 - Not yet analyzed - -

T.144: Don’t specialize function
templates.

2 - Small differences M14-8-1,
A14-8-1

T.150: Check that a class matches a
concept using static_assert.

2 - Small differences A14-1-1

CPL.1: Prefer C++ to C. 2 - Small differences A17-1-1,
A18-0-1

CPL.2: If you must use C, use the
common subset of C and C++, and
compile the C code as C++.

5 - Not yet analyzed - -

CPL.3: If you must use C for interfaces,
use C++ in the calling code using such
interfaces.

5 - Not yet analyzed - -

SF.1: Use a .cpp suffix for code
files and .h for interface files if your
project doesn’t already follow another
convention.

3 - Significant differences A3-1-2, A3-
1-3

For header file
names, AUTOSAR
C++ Coding
Guidelines allows
either “.h”, “.hpp” or
“.hxx” extension.

SF.2: A .h file may not contain
object definitions or non-inline function
definitions.

2 - Small differences A3-1-1

SF.3: Use .h files for all declarations
used in multiple source files.

2 - Small differences M3-2-2, A3-
3-1

SF.4: Include .h files before other
declarations in a file.

2 - Small differences M16-0-1

SF.5: A .cpp file must include the .h
file(s) that defines its interface.

5 - Not yet analyzed - -

SF.7: Don’t write using namespace in
a header file.

2 - Small differences M7-3-6

SF.8: Use #include guards for all .h
files.

2 - Small differences M16-2-3

SF.9: Avoid cyclic dependencies
among source files.

5 - Not yet analyzed - -

SF.21: Don’t use an
unnamed (anonymous) namespace in
a header.

2 - Small differences M7-3-3

SF.22: Use
an unnamed (anonymous) namespace
for all internal/nonexported entities.

5 - Not yet analyzed - -

361 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-std-tmp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-name
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-lambda
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-var
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-nongeneric
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-specialize-function
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-check-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-C
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-subset
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcpl-interface
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-file-suffix
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-inline
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-declaration-header
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-declaration-header
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-include-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-include-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-consistency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-consistency
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-guards
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-guards
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-cycles
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

SL.1: Use libraries wherever possible. 4 - Rejected Design
principle; There is
no need for a new
rule.

SL.2: Prefer the standard library to
other libraries.

4 - Rejected Design
principle; There is
no need for a new
rule.

SL.con.1: Prefer using STL array or
vector instead of a C array.

2 - Small differences A18-1-1

SL.con.2: Prefer using STL vector by
default unless you have a reason to
use a different container.

5 - Not yet analyzed Not yet analyzed,
this rule will be
address later.

SL.io.50: Avoid endl. 5 - Not yet analyzed - -

Type.1: Don’t use reinterpret_cast. 2 - Small differences A5-2-4
Type.2:
Don’t use static_cast downcasts. Use
dynamic_cast instead.

2 - Small differences M5-2-2

Type.3: Don’t use const_cast to cast
away const (i.e., at all).

2 - Small differences A5-2-3

Type.4: Don’t
use C-style (T) expression casts that
would perform a static_cast downcast,
const_cast, or reinterpret_cast.

2 - Small differences A5-2-2

Type.5: Don’t use a variable before it
has been initialized.

2 - Small differences M8-5-1

Type.6: Always initialize a member
variable.

2 - Small differences M8-5-1

Type.7: Avoid accessing members of
raw unions. Prefer variant instead.

2 - Small differences M9-5-1

Type.8: Avoid reading from varargs
or passing vararg arguments. Prefer
variadic template parameters instead.

2 - Small differences A8-4-1

Bounds.1: Don’t use pointer arithmetic.
Use span instead.

2 - Small differences M5-0-15

Bounds.2: Only index into arrays using
constant expressions.

2 - Small differences A5-2-5

Bounds.3: No array-to-pointer decay. 2 - Small differences M5-2-12
Bounds.4: Don’t use standard library
functions and types that are not
bounds-checked.

5 - Not yet analyzed - -

NL.1: Don’t say in comments what can
be clearly stated in code.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

362 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-lib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-sl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-sl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-arrays
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-arrays
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rsl-vector
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rio-endl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-reinterpretcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-downcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-constcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-constcast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-cstylecast
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-init
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-memberinit
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-unions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-type-varargs
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arithmetic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arithmetic
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arrayindex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-arrayindex
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-decay
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Pro-bounds-stdlib
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

NL.2: State intent in comments. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.3: Keep comments crisp. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.4: Maintain a consistent indentation
style.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.5 Don’t encode type information in
names.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.7: Make the length of a name
roughly proportional to the length of its
scope.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.8: Use a consistent naming style. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

363 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments-intent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments-crisp
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-indent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-indent
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-type
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name-length
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-name

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

NL.9: Use ALL_CAPS for macro
names only.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.10: Avoid CamelCase. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.15: Use spaces sparingly. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.16: Use a conventional class
member declaration order.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.17: Use K&R-derived layout. 4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.18: Use C++-style declarator
layout.

4 - Rejected AUTOSAR C++
Coding Guidelines
does not introduce
rules related
to coding style or
naming
convention.

NL.19: Avoid names that are easily
misread.

2 - Small differences M2-10-1

NL.20: Don’t place two statements on
the same line.

3 - Significant differences A7-1-7 It is required for
declarations only.

364 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-all-caps
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-camel
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-space
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-order
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-knr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-ptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-misread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-misread
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-stmt
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-stmt

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

NL.21: Declare one name (only) per
declaration.

2 - Small differences A7-1-7

NL.25: Don’t use void as an argument
type.

5 - Not yet analyzed - -

NL.26: Use conventional const
notation.

5 - Not yet analyzed - -

Table A.5: ISOCPP

365 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-dcl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-dcl
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-void
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-void
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-const

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

B Glossary

Abbreviation / Acronym: Description:

Real-time application (RTA) A real-time application is a program that guarantees response
within defined time constraints. The latency must be less than
a defined value, usually measured in seconds or milliseconds.
Whether or not a given application program qualifies as an
RTA depends on the worst-case execution time (WCET) - the
maximum length of time a defined task requires on a given
hardware platform.

MISRA Motor Industry Software Reliability Association.

HIC++ High Integrity C++ Coding Standard.

cvalue expression An expression that should not undergo further conversions, either
implicitly or explicitly, is called a cvalue expression.

Ownership Ownership of a resource means that the resource’s lifetime is
fully managed by the single class instance or tied with the class
instance lifetime.

366 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

One definition rule The rule states that:

• There shall be one and only one definition of any variable,
function, class type, enumeration type, or template in
a translation unit. Some of these may have multiple
declarations, but only one definition is allowed.

• There shall be one and only one definition of every non-
inline function or variable that is odr-used in the entire
program.

• An inline function definition is required in every translation
unit where it is odr-used.

• There shall be one and only one definition of a class in
any translation unit where the class is used in a way that
requires it to be complete.

• There can be more than one definition of any class,
enumeration type, inline function with external linkage,
class template, non-static function template, static data
member of a class template, member function of a class
template, partial template specialization in a program, as
long as all of the following is true:

– each definition consists of the same sequence of
tokens (typically, appears in the same header file)

– name lookup from within each definition finds the
same entities (after overload-resolution), except that
constants with internal or no linkage may refer to
different objects as long as they are not ODR-used
and have the same values in every definition.

– overloaded operators, including conversion,
allocation, and deallocation functions refer to the
same function from each definition (unless referring
to one defined within the definition)

– the language linkage is the same (e.g. the include
file isn’t inside an extern “C” block)

– the three rules above apply to every default
argument used in each definition

– if the definition is for a class with an implicitly-
declared constructor, every translation unit where it
is odr-used must call the same constructor for the
base and members

– if the definition is for a template, then all these
requirements apply to both names at the point of
definition and dependent names at the point of
instantiation

If all these requirements are satisfied, the program
behaves as if there is only one definition in the entire
program. Otherwise, the behavior is undefined.

ODR-use An object is odr-used if its address is taken, or a reference is
bound to it. A function is odr-used if a function call to it is made
or its address is taken.

367 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

POD Type POD (Plain Old Data) type is the type that is compatible with
types used in the C programming language, can be manipulated
using C library functions, and can be exchanged with C libraries
directly in its binary form.

Trivially Copyable Class A class that:

• has no non-trivial default constructors

• has no non-trivial copy and move constructors

• has no non-trivial copy and move assignment operators

• has no virtual functions

• has no virtual base classes

• has a trivial destructor

• has a default constructor

Standard-Layout Class A class that:

• has no non-static data members of type non-standard-
layout class (or array of such types) or reference

• has no virtual functions and no virtual base classes

• has the same access control for all non-static data
members

• has no non-standard-layout base classes

• has at most one base class subobject of any given type

• has all non-static data members and bit-fields in the class
and its base classes first declared in the same class

• has no element of the set M(X) of types as a base class
where M(X) is defined as follows:

– If X is a non-union class type, the set M(X) is
empty if X has no (possibly inherited) non-static
data members; otherwise, it consists of the type of
the first non-static data member of X (where said
member may be an anonymous union), X0, and the
elements of M(X0).

– If X is a union type, the set M(X) is the union of all
M(Ui) and the set containing all Ui, where each Ui is
the type of the i-th non-static data member of X.

– If X is a non-class type, the set M(X) is empty.

368 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Dataflow Anomaly The state of a variable at a point in a program can be described
using the following terms:

• Undefined (U): The value of the variable is indeterminate.

• Referenced (R): The variable is used in some way (e.g. in
an expression).

• Defined (D): The variable is explicitly initialized or assigned
a value.

Given the above, the following dataflow anomalies can be
defined:

• UR dataflow anomaly: Variable not assigned a value
before the specified use.

• DU dataflow anomaly: Variable is assigned a value that is
never subsequently used.

• DD dataflow anomaly: Variable is assigned a value twice
with no intermediate use.

Dead Code Dead code (also known as redundant code) consists of evaluated
expressions whose removal would not affect the output program.

Unreachable Code Unreachable code is code to which there is no syntactic (control
flow) path, e.g. a function which is never called, either directly or
indirectly.

Diamond Problem The “diamond problem” is an ambiguity that arises when two
classes B and C inherit from A, and class D inherits from both B
and C. If there is a method provided by class A, that is overriden
in both B and C and D does not override it, then there is an
ambiguity which version of the method does D actually inherit.
See: Wikipedia.org for more details.

Interface class An interface class is a class which has following properties:

• if there are any, all methods are public pure virtual

• if there are any, all data members are public static
constexpr

Extended precision format The IEEE Standard for Floating-Point Arithmetic (IEEE 754)
specifies extended precision formats, that are recommended for
allowing a greater precision format than that provided by the
basic formats.
For an extended format the exponent range must be as great
as that of the next wider basic format. For instance, 64-bit
extended precision binary number must have an “exponent max”
of at least 16383, which is equal to “exponent max” of 128-
bit binary floating-point. The 80-bit extended format meets this
requirement.

Fundamental types C++ built-in types defined in C++ Language Standard [3] in
chapter 3.9.1, e.g. char, signed char, unsigned char, int, long
long int, wchar_t, bool, float, double, void, std::nullptr_t, etc.

369 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

https://en.wikipedia.org/wiki/Multiple_inheritance

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Scalar types A scalar type is a type that provides built-in functionality for the
addition operator without overloads. Following types are scalar
types:

• integral types

• floating point types

• pointers

• scoped and unscoped enumerations

• std::nullptr_t

glvalue A glvalue is an lvalue or an xvalue.

rvalue An rvalue is an xvalue or a prvalue.

lvalue An lvalue represents an object that occupies identifiable location
in memory.

xvalue An xvalue refers to an object, usually near the end of its lifetime,
so that its resources may be moved.

prvalue A prvalue is an rvalue that is not an xvalue, e.g. a literal (such as
true, nullptr, etc.) or the result of calling a function whose return
type is not a reference is a prvalue.

Implicitly-defined default
constructor

Implicitly-defined default constructor calls default constructors of
its base classes and non-static data members. It has exactly the
same effect as a user-defined constructor with empty body and
empty initializer list.

Implicitly-defined copy
constructor

Implicitly-defined copy constructor of a class type (class or struct)
performs full member-wise copy of the object’s bases and non-
static data members, in their initialization order, using direct
initialization.

Implicitly-defined move
constructor

Implicitly-defined move constructor of a class type (class or
struct) performs full member-wise move of the object’s bases
and non-static members, in their initialization order, using direct
initialization with an xvalue argument.

Implicitly-defined copy
assignment operator

Implicitly-defined copy assignment operator of a class type
(class or struct) performs full member-wise copy assignment
of the object’s bases and non-static data members, in their
initialization order, using built-in assignment for the scalars and
copy assignment operator for class types.

Implicitly-defined move
assignment operator

Implicitly-defined move assignment operator of a class type
(class or struct) performs full member-wise move assignment
of the object’s direct bases and immediate non-static data
members, in their initialization order, using built-in assignment
for the scalars, member-wise move-assignment for arrays, and
move assignment operator for class types (called non-virtually).

370 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

Guidelines for the use of the C++14 language in critical and safety-related systems
AUTOSAR AP Release 17-03

Implicitly-defined destructor Implicitly-defined destructor has an empty body. After the body of
the destructor is executed, the destructors for all non-static non-
variant data members of the class are called, in reverse order
of declaration. Then it calls destructors of all direct non-virtual
base classes, in reverse order of construction, and then it calls
the destructors of all virtual bases.

Table B.1: table:acronyms

371 of 371
— AUTOSAR CONFIDENTIAL —

Document ID 839: AUTOSAR_RS_CPP14Guidelines

	1 Background
	2 The vision
	2.1 Rationale for the production of AUTOSAR C++14
	2.2 Objectives of AUTOSAR C++14

	3 Scope
	3.1 Allowed features of C++ language
	3.2 Limitations

	4 Using AUTOSAR C++14
	5 Introduction to the rules
	5.1 Rule classification
	5.1.1 Rule classification according to compatibility with MISRA
	5.1.2 Rule classification according to obligation level
	5.1.3 Rule classification according to enforcement by static analysis
	5.1.4 Rule classification according to allocated target

	5.2 Organization of rules
	5.3 Exceptions to the rules
	5.4 Redundancy in the rules
	5.5 Presentation of rules
	5.6 Understanding the issue references
	5.7 Scope of rules

	6 AUTOSAR C++14 coding rules
	6.0 Language independent issues
	6.0.1 Unnecessary constructs
	6.0.2 Storage
	6.0.3 Runtime failures
	6.0.4 Arithmetic

	6.1 General
	6.1.1 Scope
	6.1.2 Normative references
	6.1.4 Implementation compliance

	6.2 Lexical conventions
	6.2.3 Character sets
	6.2.5 Trigraph sequences
	6.2.6 Alternative tokens
	6.2.8 Comments
	6.2.9 Header names
	6.2.11 Identifiers
	6.2.14 Literals

	6.3 Basic concepts
	6.3.1 Declarations and definitions
	6.3.2 One Definition Rule
	6.3.3 Scope
	6.3.4 Name lookup
	6.3.9 Types

	6.4 Standard conversions
	6.4.5 Integral promotions
	6.4.7 Integral conversion
	6.4.10 Pointer conversions

	6.5 Expressions
	6.5.0 General
	6.5.1 Primary expression
	6.5.2 Postfix expressions
	6.5.3 Unary expressions
	6.5.6 Multiplicative operators
	6.5.8 Shift operators
	6.5.10 Equality operators
	6.5.14 Logical AND operator
	6.5.16 Conditional operator
	6.5.18 Assignment and compound assignment operation
	6.5.19 Comma operator
	6.5.20 Constant expression

	6.6 Statements
	6.6.2 Expression statement
	6.6.3 Compound statement or block
	6.6.4 Selection statements
	6.6.5 Iteration statements
	6.6.6 Jump statements

	6.7 Declaration
	6.7.1 Specifiers
	6.7.2 Enumeration declaration
	6.7.3 Namespaces
	6.7.4 The asm declaration
	6.7.5 Linkage specification

	6.8 Declarators
	6.8.0 General
	6.8.2 Ambiguity resolution
	6.8.3 Meaning of declarators
	6.8.4 Function definitions
	6.8.5 Initilizers

	6.9 Classes
	6.9.3 Member function
	6.9.5 Unions
	6.9.6 Bit-fields

	6.10 Derived Classes
	6.10.1 Multiple base Classes
	6.10.2 Member name lookup
	6.10.3 Virtual functions

	6.11 Member access control
	6.11.0 General
	6.11.3 Friends

	6.12 Special member functions
	6.12.0 General
	6.12.1 Constructors
	6.12.4 Destructors
	6.12.6 Initialization
	6.12.7 Construction and destructions
	6.12.8 Copying and moving class objects

	6.13 Overloading
	6.13.1 Overloadable declarations
	6.13.2 Declaration matching
	6.13.3 Overload resolution
	6.13.5 Overloaded operators
	6.13.6 Build-in operators

	6.14 Templates
	6.14.0 General
	6.14.1 Template parameters
	6.14.5 Template declarations
	6.14.6 Name resolution
	6.14.7 Template instantiation and specialization
	6.14.8 Function template specializations

	6.15 Exception handling
	6.15.0 General
	6.15.1 Throwing an exception
	6.15.2 Constructors and destructors
	6.15.3 Handling an exception
	6.15.4 Exception specifications
	6.15.5 Special functions

	6.16 Preprocessing directives
	6.16.0 General
	6.16.1 Conditional inclusion
	6.16.2 Source file inclusion
	6.16.3 Macro replacement
	6.16.6 Error directive
	6.16.7 Pragma directive

	6.17 Library introduction - partial
	6.17.1 General
	6.17.2 The C standard library
	6.17.3 Definitions

	6.18 Language support library - partial
	6.18.0 General
	6.18.1 Types
	6.18.2 Implementation properties
	6.18.5 Dynamic memory management
	6.18.9 Other runtime support

	6.19 Diagnostics library - partial
	6.19.4 Error numbers

	6.23 Containers library - partial
	6.23.1 General

	6.27 Input/output library - partial
	6.27.1 General

	7 References
	A Traceability to existing standards
	A.1 Traceability to MISRA C++:2008
	A.2 Traceability to HIC++ v4.0
	A.3 Traceability to JSF
	A.4 Traceability to SEI CERT C++
	A.5 Traceability to C++ Core Guidelines

	B Glossary

